Reg. No. :

Question Paper Code: UB701

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

Professional Elective

Biomedical Engineering

21BMV701 BIO-MEMS AND NANO ELECTRONICS

(Common to All branches)

(Regulations 2021)

Duration: Three hours

Maximum: 100 Marks

Answer All Questions

PART A - (10 x 2 = 20 Marks)

1.	List the advantages of using Gallium Arsenide over silicon in MEMS applications.	CO1-U
2.	Mention the importance of the process of doping in MEMS fabrication.	CO1-U
3.	Define thermo-mechanics in the context of MEMS design.	CO1-U
4.	List out the applications of MEMS technology in medical equipment design.	CO1-U
5.	Differentiate molecular transportation and molecular sortation.	CO1-U
6.	How has technology influenced current medical practice in diagnosis and treatment?	CO1-U
7.	What is the principle behind displacement nano-sensors in biomedical applications?	CO1-U
8.	List out the importance of cellular bio scanning in Nano sensor.	CO1-U
9.	How are Nano materials used in cancer treatment?	CO1-U
10.	List out the disadvantages of using nanotechnology in medicine.	CO1-U
	PART – B (5 x 16= 80 Marks)	
11.	(a) (i) Compare the properties of various materials used for MEMS CO1-U technology.	(8)
	(ii) Briefly explain the major micromachining techniques used in CO1-U MEMS manufacturing	(8)

- (b) Describe the LIGA process in MEMS manufacturing. What are CO1-U (16) the key steps involved, and how is it used to create high-precision MEMS components?
- 12. (a) Analyze the effects of mechanical vibration on MEMS devices. CO4-Ana (16) How do vibration-related issues impact the performance of mechanical sensors and actuators, and what design strategies can be used to minimize these effects?

Or

- (b) Analyze the working principles of a piezoelectric inchworm CO4-Ana (16) motor. How does the motor convert electrical energy into mechanical motion, and what are the critical factors influencing its precision and efficiency in micro-positioning systems?
- 13. (a) Considering the evolution of bedside practice, how would you CO3-App (16) integrate nano-medical technologies into a hospital setting for real-time patient monitoring? What challenges would arise in implementing these technologies, and how could they transform patient care?

Or

- (b) In the context of the evolution of scientific medicine, how would CO3-App (16) you integrate nano-medical interventions with traditional medical practices to treat inflammatory diseases? Discuss the practical and ethical considerations involved in combining nano-medicine with conventional therapies.
- 14. (a) Describe the working mechanism of thermal nano-sensors and CO1-U (16) explain how they are utilized to monitor temperature variations in real-time medical applications. Also point out the key advantages of using thermal nano-sensors in healthcare.

Or

- (b) Explain how real-time and in vivo medical monitoring is CO1-U (16) achieved using nano-sensor technology. Also point out the key benefits and challenges of using nano-sensors for continuous monitoring in clinical settings.
- 15. (a) (i) Explain the role of nano-devices in clinical nano-diagnostics. CO1-U (8)

(ii) Propose a surgical procedure using nano-robots to assist in CO3-App (8) organ transplantation. How would nano-robots help in reducing tissue rejection and improving post-surgery recovery?

Or

- (b) (i) Explain how nanotubes are used for the detection of cancer CO1-U (8) proteins.
 - (ii) Develop a method for using gold nanoparticles to diagnose CO3-App (8) early-stage breast cancer. How would you ensure that gold nanoparticles target only cancerous cells, and what are the key steps in your method?

UB701