Reg. No.:					

Question Paper Code:91M02

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

First Semester

Civil Engineering

19UMA102- ENGINEERING MATHEMATICS I

(Common to ALL branches)

(Regulation 2019)

Duration: Three hours

Answer ALL Questions

Maximum: 100 Marks

PART A - $(10 \times 1 = 10 \text{ Marks})$

		PAKI A - (10	x = 10 Wiarks					
1.								
	$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is	- ⁺						
	(a) abcd	(b) $ad - bc$	(c) a	(d) 0				
2.	The equation $ A - \lambda $	I = 0 is called the	of the matrix A.		CO1-U			
	(a) Characteristic equ	uation	(b) Characteristic polyno					
	(c) Eigen value		(d) None of the above					
3.	The n^{th} derivative of $y = f(x)$ at $x=a$ is denoted by							
	(a) $(y_n)_a$	$(b)(y_n)$	$(c)y_a$	$(d) (y_a)^n$				
4.	$\frac{d}{d}(\frac{u}{d}) =$				CO2-U			

5. The degree of the homogeneous function

CO3-U

 $u = \frac{x^2 + y^2}{\sqrt{x + \sqrt{y}}} \text{ is } \underline{\hspace{1cm}}$

(b)1

(c)3/2

 $(c)\frac{v\frac{du}{dx}/u\frac{dv}{dx}}{v^2}$

(d)0

A point at which f(x, y) has neither maximum nor minimum is called CO₃-U

(a) Saddle point

(b) Stationary point (c) Maximum point

(d) Minimum point

 $\int (ax+b)^n dx$

CO4-U

(a) $\frac{(ax+b)^{n+1}}{a(n+1)}$ (b) $\frac{(ax+b)^{n-1}}{a(n-1)}$

 $(d)^{\frac{(ax+b)^n}{an}}$

8. $\int \sin^2 x \, dx =$

CO4-U

(a) $\frac{x}{2} - \frac{\sin 2x}{4}$ (b) $\cos^2 x$

 $(c)x - \frac{\cos 2x}{2}$

 $(d)^{\frac{x}{2}} - \frac{\cos 2x}{4}$

9. The value of $\int_2^4 \int_1^2 \frac{dxdy}{xy}$ is _____

CO5-U

CO5-U

(a) log2

(b) log 2/log2

(c) 2log 2

(d) 2

10. Change the order of integration in $\int_0^\infty \int_x^\infty f(x, y) dxdy$ is_____

 $(a)\int_0^\infty \int_x^\infty f(x, y) dxdy$

 $(b)\int_0^\infty \int_0^\infty f(x, y) dxdy$

 $(c)\int_0^\infty \int_0^x f(x, y) \ dxdy$

(d) None of the above

PART - B (5 x 2= 10 Marks)

11. State CayleyHamilton Theorem?

CO1-U

12. Evaluate

CO2-U

13. State Euler's theorem.

CO₃-U

14. Evaluate

CO4-U

 $\int_{0}^{\frac{\pi}{2}} \sin^6 x \, dx$

15. Evaluate

CO5-U

 $\int_0^a \int_0^b \int_0^c dx dy dz.$

PART - C (5 x 16= 80Marks)

Use orthogonal transformation to reduce the quadratic form into CO1- App 16. (a) (16)canonical form

$$Q = 2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 - 2x_1x_3 - 4x_3x_2$$
Or

(b) Show that the matrix CO1- App (16) $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

satisfies its own characteristic equation and hence find A^{-1}

17. (a) (i)Find the nth derivative of CO2- App (8)

$$\frac{1}{x^2 + a^2}$$
(ii) Expand $e^{\cos x}$ by Maclaurin's series CO2- App (8)

- 18. (a) The temperature u(x,y,z) at any point in space is u = CO3-Ana (16) $400xyz^2$. Find the highest temperature on surface of the sphere $x^2 + y^2 + z^2 = 1$.
 - (b) (i) Expand $e^x \cos y$ about $\left(0, \frac{\pi}{2}\right)$ upto third term using Taylor's CO3- Ana series.
 - (ii) If $u = \sin^{-1}\left(\frac{x^3 + y^3}{x + y}\right)$ prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan u$. CO3- Ana (8)
- 19. (a) Find the relation between Beta and Gamma function. CO4-App (16)

Or

(b) Evaluate $\int_{0}^{\frac{\pi}{2}} \cos^{m} x \sin^{n} x dx$ (16)

20. (a) Find the volume of the ellipsoid CO5-App (16) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ using integration.

Or

(b) Change the order of integration and then evaluate CO5-App (16) $\int_0^4 \int_{\frac{x^2}{4}}^{2\sqrt{x}} xy dy dx.$