Reg. No. :

Question Paper Code:R3105 B.E./B.Tech. DEGREE EXAMINATION, NOV 2024 Third Semester **Civil Engineering R21UCE 305-FLUID MECHANICS** (Regulations R2021) **Duration:** Three hours Maximum: 100 Marks PART A - $(5 \times 1 = 5 \text{Marks})$ 1. The property of a fluid which determines its resistance to CO1 -U shearing stress is called (b) Surface tension (c) Compressibility (d) None of the above (a) Viscosity CO1 -U A venturimeter having a throat diameter of 0.1 m is used to estimate the flow 2. rate of a horizontal pipe having a diameter of 0.2 m. For an observed pressure difference of 2 m of water head and coefficient of discharge equal to unity, assuming that the energy losses are negligible, the flow rate (in m³/s) through the pipe is approximately equal to (a) 0.150 (b) 0.050 (c) 0.150(d) 0.050 Which of the following quantities has the dimensions $[M^0 L^0 T^0]$ CO1 -U 3. (a) Stress (b) Strain (c) Strain Rate (d) Density A 2 km long pipe of 0.2 m diameter connects two reservoirs. The difference 4. CO2 - App between water levels in the reservoirs is 8 m. The Darcy-Weisbach friction factor of the pipe is 0.04. Accounting for frictional, entry and exit losses, the velocity in the pipe (in m/s) is (a) 0.63 (b) 0.35 (c) 2.52(d) 1.25 The region between the separation streamline and the boundary surface of the 5. CO1 -U solid body is known as

(a) wake (b) drag (c) lift (d) boundary layer PART – B (5 x 3=15Marks)

6. Write short notes on Total Pressure and Centre of Pressure. CO1- U

7.	Wha	at is venturimeter? Write the main parts of Venturimeter.	CO1-	U
8.	List	out the advantages of model analysis.	CO1-	U
9.	Wha	at is major loss in a pipe	CO1-	U
10.	Writ	te Von Karman's momentum integral equation for boundary layer flow.	. CO1-	U
11.	(a)	PART – C (5 x 16= 80Marks) Calculate the capillary effect in millimeters a glass tube of 4 mm C diameter, when immersed in a) water b) mercury. The temperature of the liquid is 20° C and the values of the surface tension of water and mercury at 20° C in contact with air are 0.073575 and 0.51 N/m respectively. The angle of contact for water is zero that for mercury 130°. Take specific weight of water as 998 kg/m ³ Or	CO2 - App	(16)
	(b)	If the velocity distribution over a plate is given by $u = 2/3y-y^2$ in C which u is the velocity in metre per second at a distance y metre above the plate, determine the shear stress at y=0 and y=0.15 m.Take dynamic viscosity of fluid as 8.63 poise	CO2 - App	(16)
12.	(a)	If for a two – dimensional potential flow, the velocity potential is C given by $\phi = x (2y - 1)$ determine the velocity at the point P(4,5). Determine also the value of stream function Ψ at the point P. Or	CO2 - App	(16)
	(b)	A 40 cm diameter pipe conveying water branches into two pipes of C diameters 30 cm and 25 cm respectively. if the average velocity in the 40 cm diameter pipe is 2.5m/find the discharge in this pipe and also the velocity in 25 cm pipe .if the average velocity in 30 cm diameter pipe is 4m/s	CO2 - App	(16)
13.	(a)	 (i) Explain in detail about types of forces acting in moving fluids (ii) Write short notes on Dimensionless numbers and its types Or 	CO1- U	(8+8)
	(b)	Discuss about Buckingham's π theorem. State the procedure for C solving problems.	CO1- U	(16)
14.	(a)	A crude oil of kinematic viscosity 0.4 stoke is flowing through a C pipe of diameter 300mm at the rate of 300 liters per sec. Find the head lost due to friction for a length of 50m of the pipe Or	CO2 - App	(16)

- (b) A sudden enlargement of a water main from 240mm to 480mm CO2 App (16) diameter ,The hydraulic gradient by 10mm.Estimate the rate of flow.
- 15. (a) A flat plate 1.5m X 1.5m moves at 50km/hr in stationary air of CO2 App (16) density 1.15kg/m³. If the coefficient of drag and life are 0.15 and 0.75 respectively. Determine the lift force, drag force ,resultant force and the power required to keep the plate in motion

Or

(b) Calculate the total drag on one side of a smooth plate with a length CO2 - App (16) of 5 m and a width of 2.5 m, when the plate is moving at a velocity of 6 m/s in stationary air. Determine the drag assuming: (i) the boundary layer is laminar over the entire length of the plate, and (ii) the boundary layer is turbulent from the very beginning. Use a kinematic viscosity of $=3.5 \times 10^{-5} \text{ m}^2/\text{s}$, and an air density of 2.226 kg/m³.

R3105