Reg. No:								
	l .		l	l				

CO6- U

Question Paper Code:U3M25

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

Third Semester

CivilEngineering

		CIVIIEII	gmeering		
	21UMA325-PRO	OBABILITY, STATIST	ICS AND TRANSF	ORM TECHNIQU	ES
		(Regulat	tions2021)		
Dur	ation: Three hours			Maximum: 1	00 Marks
		Answer A	ll Questions		
		PART A - (10	0x 1 = 10Marks		
1.	Probability of sure	event is equal to			CO6-U
	(a)0	(b)1	(c) 2	(d) 10	
2.	The mean of the ra	ndom variable is denote	ed by		CO6- U
	(a) E(X)	(b) E(X ²)	(c) 0	(d) 1	
3.	The degrees of free	edom in t-tests is			CO6- U
	(a) n-1	(b) n-2	(c) n-3	(d) n-4	
4.	Choose the t-test for	or mean			CO6- U
	(a) $t = \frac{\overline{x_1} - \mu}{s / \sqrt{n-1}}$	(b) $t = \frac{\overline{x_1} + \mu}{s / \sqrt{n-1}}$	(c) t = 0	(d) None of the a	bove
5.	If $f(x + t) = f(x)$,	then f(x) is said to be ar	ı		CO6- U
	(a) Odd Function	(b) Even Function	(c) Periodic function	n (d) Self Reci	procal
6.	The Fourier consta	nt b_n in $(-\pi,\pi)$ for $x \sin \theta$	x is		CO6- U
	(a) x^2	(b) 3x	(c) 0	(d) 1	
7.	$F[xf(x)] = \underline{\hspace{1cm}}$	_			CO6- U
	(a) $-F_c[f(x)]$	(b) $\frac{d}{ds} \{ F_s[f(x)] \}$	$(c)-F_s[f(x)]$	(d) $-\frac{d}{ds} \{ F_c [$	f(x)]

(a) $\sqrt{\frac{2}{\pi}} \frac{s}{s^2 + a^2}$ (b) $\sqrt{\frac{2}{\pi}} \frac{a}{s^2 + a^2}$ (c) $\sqrt{\frac{2}{\pi}} \frac{a^2}{s^2 + a^2}$ (d) $\sqrt{\frac{2}{\pi}} \frac{s^2}{s^2 + a^2}$

 $8. \quad F_s[e^{-ax}] = \underline{\hspace{1cm}}$

The Z transform of a unit step function is _____.

CO5-U

(a)
$$\log(\frac{z}{z+1})$$
 (b) $\frac{z}{z+1}$

$$(b)\frac{z}{z+1}$$

(c)
$$\log(\frac{z}{z-1})$$

$$(d)^{\frac{z}{z-1}}$$

10. Evaluate $Z(\frac{1}{n!})$

CO5- U

(a)
$$e^{-1/z}$$

(b)
$$e^{1/z}$$

$$(c)e^{2z}$$

(d)
$$e^{1/z} - 2$$

PART - B (5 x 2= 10Marks)

I Find the mean for the discrete RV X with probability distribution

CO1- App

X	-2	-1	0	1
P(X)	0.4	0.1	0.2	0.3

Write the important properties of F-distribution

CO2-U

Find b_n in the Fourier series of $f(x) = |\cos x|$ in $(0,2\pi)$.

CO₃- App

State Fourier integral theorem.

CO6- U

15. Prove that
$$Z(\sin \frac{n\pi}{2}) = \frac{z}{z^2 + 1}$$

CO₅ App

(16)

$$PART - C (5 \times 16 = 80 Marks)$$

16. (a) A Random Variable X has the following probability distribution CO1-App

X=x	0	1	2	3	4	5	6	7
P(X=x)	0	a	2a	2a	3a	a^2	$2a^2$	$7a^2+a$

Find (i) 'a'

(ii)
$$P(X < 6)$$
, $P(X \ge 6)$, $P(0 < X < 4)$

(iii)
$$P(X < 6/X > 4)$$

(iv) Find the minimum value of '
$$\lambda$$
' such that $P(X \le \lambda) > \frac{1}{2}$

Or

- (b) (i) Using the probability mass function for Binomial distribution, CO1 -App (8)Compute the moment generating function and hence find its mean and variance.
 - (ii)Using an Exponential distribution State and Prove the memory CO1 -App (8)less property..

- 17. (a) (i) A sample analysis of examination results of 500 students was CO2 -Ana (8) made. It was found that 220 students have failed, 170 have secured a third class, 90 have secures a second class and the rest, a first class. So these figures support the general belief that the above categories are in the ratio 4:3:2:1 respectively?
 - (ii) Two group of students A and B were tested , the marks CO2 -Ana (8) obtained were as follows

A	18	20	36	50	49	36	34	49	41
В	29	28	26	35	30	44	46		

Examine the significance of difference between the average marks secured by the students of the above two groups

Or

(b) (i) Two horses A and B were tested according to time (in seconds) CO2 -Ana to run on a particular track with the following results:

Horse A	28	30	32	33	33	29	34
Horse B	29	30	30	24	27	29	

Test whether horse A is running faster than B at 5% level.

(ii) A group of 10 rats fed on diet A and another group of 8 rats CO2 -Ana fed on diet B, recorded the following increase in weight.

Diet	5	6	8	1	12	4	3	9	6	10
A										
Diet	2	3	6	8	10	1	2	8		
В										

Find the variances are significantly different

18. (a) Express $f(x) = \frac{1}{2}(\pi - x)$ as a Fourier series of period 2π in the interval $0 < x < 2\pi$.

Or

(b) The table of values of the function y = f(x) is given below:

CO3- App (16)

(8)

(8)

x:	0	$\pi/3$	$2\pi/_3$	π	$4\pi/_{3}$	$5\pi/_3$	2π
y:	1.8	0.3	0.5	2.16	1.3	1.76	1.8

Find a Fourier series up to the third harmonic to represent f(x) in terms of x

Compute the Fourier Transform of $f(x) = \begin{cases} 1 - x^2 / x / < 1 \\ 0 & otherwise \end{cases}$ and hence evaluate the value of (i) $\int_{0}^{\infty} \frac{\sin t - t \cos t}{t^3} dt$ $\int_{0}^{\infty} \left(\frac{\sin t - t \cos t}{t^3} \right)^2 dt$

Or

- (b) Compute (i) $\int_{0}^{\infty} \frac{dx}{(x^2+1)(x^2+4)}$ (ii) $\int_{0}^{\infty} \frac{x^2dx}{(x^2+9)^2}$ using Fourier transform
- 20. (a) (i) Solve the difference equation $y_{n+2} 6y_{n+1} + 8y_n = 5^n$ given CO5- App (8) that $y_0 = 0$, $y_1 = 0$
 - (ii) Using Convolution theorem find $Z^{-1} \left[\frac{10z^2}{(5z-2)(2z+1)} \right]$ CO5- App (8)
 - (b) (i) Solve the difference equation $y_{n+2} + 3y_{n+1} 10y_n = 3^n$ given CO5- App that $y_0 = 0$, $y_1 = 0$
 - (ii) Using Convolution theorem find $Z^{-1} \left[\frac{14z^2}{(7z+3)(2z-1)} \right]$ CO5- App (8)