/	•
\vdash	•
1	•

(c) Pericyclic reaction

Question Paper Code:91006

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

First Semester

Civil Engineering

19UCY106 - CHEMISTRY FOR CIVIL ENGINEERING

(Regulation 2019)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

	Answer ALL Que	estions			
	PART A - $(10 \times 1) = 10 \times 10^{-1}$	10 Marks)			
1.	 Temporary hardness of water is caused by the presence of (a) Chlorides of calcium and magnesium (b) Sulfates of calcium and (c) Carbonates of sodium and 		CO1- R		
			iesium		
			tassium		
2.	Zeolite softening process removes		CO1- R		
	(a) only temporary hardness of water				
	(b) only permanent hardness of water				
	(c) both temporary and permanent hardness of water				
	(d) the dissolved gases in permanent hard water				
3.	3. Permanent hardness of water may be softened by passing it through		CO1- R		
	(a) Sodium silicate	(b) Sodium bicarbonate			
	(c) Sodium hexametaphosphate	(d) Sodium phosphate			
4.	4. Which type of chemical reaction is observed at cathode, in electrochemical corrosion?		CO3- U		
	(a) Reduction reaction	(b) Oxidation reaction			

(d) None of the above

5.	Which of the following is an example of corrosion?			CO3- U		
	(a) Rusting of iron		(b) Tarnishing of silver	r		
	(c)Liquefaction of ammonia		(d) Rusting of iron and	(d) Rusting of iron and tarnishing of silver		
6.	Sele	Select the incorrect statement from the following option			CO3	Ann
	(a) I	Replacement of co	orroded equipment is	time-consuming		
	(b) ((b) Corrosion increases the electrical conductivity of metals				
	(c) (Corrosion causes	contamination of prod	duct		
	(d) (Corrosion causes 1	leakage of toxic liqui	d or gases		
7.		at is the unit of abert's law	absorbance which	can be derived from Beer	СО	2- R
	(a) I	mol ⁻¹ cm ⁻¹	(b) L gm ⁻¹ cm ⁻¹	(c) cm	(d) No unit	
8.	Whi	СО	2- R			
	(a) ().8 - 500µm	(b) 400 - 100nm	(c) 380 - 750nm	(d) 0.01 - 10ni	m
9.	Wha	at is the average p	article size of cement	t?	CO	4- R
	(a) 1	15 microns	(b) 45 microns	(c) 75 microns	(d) 100 micros	ns
10.	Firing temperature of magnesite bricks is about°C.				CO	4- R
	(a) 8	800-1000	(b) 1000-1200	(c) 1600-1800	(d) 2400-2600)
			PART - B (5	x 2= 10 Marks)		
11.	Diff	Perentiate scale and	CO1- Ana			
12.	Wri	CO1- R				
13.	Ana	CO2- Ana				
14.	Defi	CO3- R				
15.	Write the composition of portland cement.				CO4-]	R
			PART – C ((5 x 16= 80 Marks)		
16.	(a)		ernal conditioning of action involved in it.	water. Explain the different	CO1- U	(16)
			Or			
	(b)	•	rinciple of EDTA? or by EDTA method.	Describe the estimation of	of CO1-U	(16)

17. (a) What are ion exchange resins? Discuss their applications in water- CO1- U softening. How spent resins are regenerated?

Or

(b) (i) Explain reverse osmosis method of desalination of brackish CO1- U water with advantages.

(ii) Calculate the carbonate and non carbonate hardness of a sample CO1- U of water containing the dissolved salts as given below in mgs/ lit Mg $(HCO_3)_2 = 7.3$, Ca $(HCO_3)_2 = 40.5$, CaSo₄ = 13.6 , Mgcl₂ = 21.75 and Nacl = 50.

18. (a) What are paints? Explain its constituents with its functions. CO2- U (16)

- (b) Define electroplating. Explain the process involved in the CO2-U (16) electroplating of gold on other surfaces.
- 19. (a) Explain the principle and working of UV-Visible spectroscopy and CO3- U (16) discuss any four applications.

Or

- (b) What is gas chromatography? Explain how this technique is used in CO3- U (16) the separation of constituents in compounds.
- 20. (a) Explain the process involved in the manufacturing of magnesite CO4- U (16) and zirconia brick

Or

(b) Explain the different steps involved in the manufacturing of CO4- U (16) portland cement.