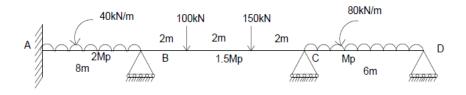
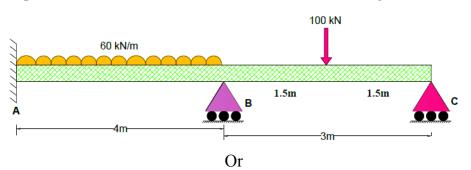

		Reg. No :						
		Question Pap	er Code: U	5101				
	B.E.	/B.Tech. DEGREE EX	AMINATION	N, NOV 2	2024			
		Fifth Se	emester					
		Civil Eng	gineering					
		21UCE501 STRUCT	URAL ANAL	YSIS II				
		(Regulation	ons 2021)					
						imum	: 100	Marks
1		PART A - (5 2	x = 5 Marks)				C	NO1 11
1.	Shape factor for a rh						C	CO1- U
2	(a) 1.5	(b) 2.346	(c) 1.697			(d) 2	C	NO1 11
2.	The basic unknowns of matrix stiffness method is					CO1- U		
	(a) Redundant forces (b) Displacements (c) Real forces				(d) Moments			
3.	The inverse of flexibility matrix is						C	CO1- U
	(a) Flexibility matrix	(b) Adjacent of flexibility matrix						
	(c) Transformation r		(d) Stiffness matrix					
4.	Beams curved in plan are mainly subjected to						C	CO1- U
	(a) Shear (b) Bending moment							
	(c) Twisting Moment (d) Shear, Bending & Twi				sting Mo	oment		
5.	The lateral deflection					CO1- U		
	(a) Buckling	Buckling (b) Sinking (c) Sway				(d) Be	nding	5
		PART – B (5 2	x = 15 Marks)				
6.	Find the depth of actual neutral axis of the T section having the following dimensions						CO	2-App
	Top flange : 100mm	n x 10mm; Web	: 10mm x 12	20mm				
7.	List out the properties of the Stiffness matrix.						CO	1-U

7. List out the properties of the Stiffness matrix.

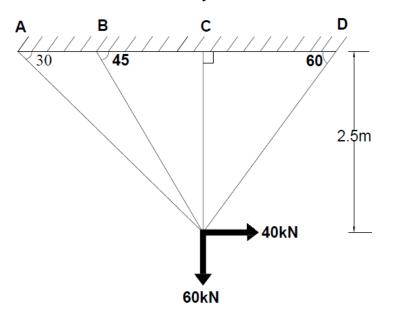
8. Determine the fixed end moments for the continuous beam loaded as shown in CO3-App fig.


- 9. Calculate the vertical & horizontal reactions in a cable carrying a load of 10 CO4-Ana kN/m of horizontal span of 80m. The supports are at the same level and the central dip is 4m.
- 10. List out the various forces are acting in a portal frames.CO1-U

$PART - C (5 \times 16 = 80 Marks)$


11. (a) Establish the collapse mechanism and calculate the collapse CO2-App (16) moment for the portal frame ABCD with hinged feet has stanchions 4m high and a beam of 6m span. There is a horizontal point load of 40kN at B while the beam carries a point load of 120kN at mid span. Using a load factor of 1.75. Assume same plastic moment capacity for all the members.

Or


(b) Find plastic moment of capacity of beam shown in fig. CO2-App (16)

12. (a) Analyze the continuous beam loaded as shown in fig. by CO4-Ana (16) displacement method. Assume EI isnot uniform throughout.

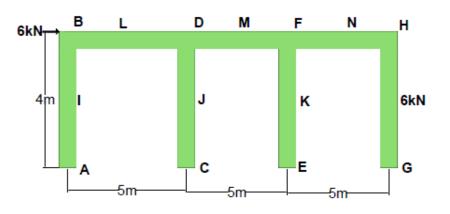
(b) Analyse the pin jointed truss as shown in fig using matrix CO5-Ana (16) stiffness method. Take area of cross section for all members is 1000mm² and modulus of elasticity is 200kN/mm².

13. (a) Determine bending moments& support reactions for the two CO3-App (16) spans continuous beam of section is fixed at A hinged at B and C. Span AB is 4m and BC is 3m long. Span AB is loaded with uniformly distributed load of intensity 60kN/m Span BC is loaded with mid span point load of 100kN. Sketch the bending moment diagram using matrix flexibility method.

Or

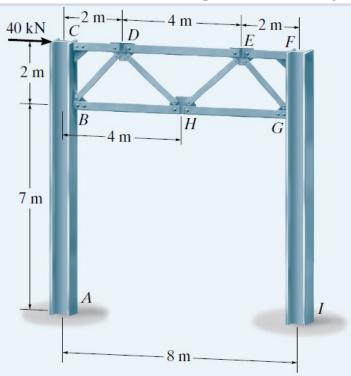
(b) A three span continuous beam of span AB is 12m, BC is 12m & CO3-App (16)
CD is 12m. The following loads are acting in the spans are

1.Span AB is 40kN/m UDL


2.Span BC is 120kN point load at distance 4m from B

3. Span CD is 20kN/m UDL

Determine the moments of the continuous beam and sketch the BMD.


14. (a) Analyse the suspension cable, having same level at supports has a CO4-Ana (16) span of 50 m and the maximum dip is 4 m. The cable is loaded with a UDL of 15 kN/m run over the whole span and two point loads 35 kN each at middle third points. Analyse the Maximum tension in the cable and the length of the cable

- (b) Analyse the central dip for the suspension cable of 130 m CO4-Ana (16) horizontal span is supported at the same level. It is subjected to a uniformly distributed load of 28.5 kN per horizontal metre. If the maximum tension in the cable is limited to 5000 kN,
- 15. (a) Analyse (approximately) the reactions at the base of the columns CO5-Ana (16) of the frame shown in Fig. Use the portal method of analysis.

(b) Analyse the frame by portal methods and also estimate the forces CO5-Ana (16) acting in the members of the Warren portal shown in Fig.

4