				<u> </u>			
A		Reg. No. :					
		Question Pa	per Code: 52002	7			
		B.E. / B.Tech. DEGREE I	EXAMINATION, NO	V 2024			
		Secon	d Semester				
		Civil E	Engineering				
		15UMA202- ENGINEE	ERING MATHEMATI	(CS-II			
		(Common t	o All branches)				
		(Regul	ation 2015)				
Durati	ion: Three h	ours		Maximum: 100	Marks		
		Answer A	LL Questions $0 \times 1 = 10$ Marks)				
1. If	f y_1 and y_2 are	e the only two solutions of	$0 \times 1 = 10$ Warks)		CO1		
<u>c</u>	$\frac{d^n y}{dx^n} + k_1 \frac{d^{n-1} y}{dx^{n-1}} + k_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + k_n y = 0$ then is also it's solution						
(:	a) $c_1 y_1 + c_2$	y_2 Where $c_1 \& c_2$ are constant	ants (b) $y_1 y_2$				
(0	c) cy_1y_2 ,	where <i>c</i> is constant	(d) $\frac{y_1}{y_2}$				
2. T	The complementary function of $(D^2 + 4)y = \tan 2x$ is CO1						
(8	a) $c_1 e^{2x} + c_2$	e^{-2x}	(b) $c_1 \cos 2x + c_2$	sin 2 <i>x</i>			
(Where $c_1 \&$	c_2 are arbitrary constants	Where $c_1 \& c_2$ are arbitrary constants				
(($\begin{array}{c} (c_1 + c_1 x) \\ \text{Where } c_1 \& \end{array}$	$e^{-\alpha}$ c_2 are arbitrary constants	(d) $2c_1x - 2c_2x$ Where $c_1 \& c_2$	(d) $2c_1x - 2c_2x$ Where $c_1 \& c_2$ are arbitrary constants			
3. Т	The direction	al derivative of $xv^3 + vz$	z^3 at the point (21.1)) in the	CO2		
d	direction $\vec{i} + 2\vec{j} + 2\vec{k}$						
(:	a) $-3\frac{2}{3}$	(b) $3\frac{2}{3}$	$(c) - \frac{2}{3}$	$(d)\frac{2}{3}$			
4. <i>c</i>	url arad f=		5	5	CO2		
(:	a) 1	(b) 2	(c) 0	(d) 3			
5. T	The function v	which is analytic is			CO3		
(8	a) sin z	(b) \bar{z}	(c)Im(z)	(d) <i>Re</i>	eal(iz)		
6. I	If $2x - x^2 + ay^2$ is to be harmonic, then <i>a</i> should be CC						
(;	a) 1	(b) 2	(c) 3	(d) 0			

7.	$\int_{ z-a =r} \frac{dz}{z-a} =$			CO4 -R					
	(a) π i	(b) 2 π	(c) 2 π i	(d) π					
8.	A pole of order is called a simple pole C								
	(a) 0	(b) 3	(c) 2	(d) 1					
9.	$L{\sinh at} =$			CO5- R					
	$(a)\frac{a}{s^2+a^2}$	(b) $\frac{a}{s^2-a^2}$	$(c)\frac{s}{s^2-a^2}$	(d) $\frac{s}{s^2+a^2}$					
10.	$L^{-1}\left\{\frac{s^2 - 3s + 4}{s^3}\right\} =$			CO5 -R					
	(a) $1 - 3t - 2t^2$	(b) $1 + 3t - 2t^2$	(c) $1 + 3t + 2t^2$	(d) $1 - 3t + 2t^2$					
$PART - B (5 \times 2 = 10 \text{Marks})$									
11.	Define Cauchy's homogeneous linear equation								
12.	If $\vec{r} = x\vec{\iota} + y\vec{j} + z\vec{k}$ then find $\nabla . \vec{r}$								
13.	If $w = \log z$, find $\frac{dw}{dz}$								
14.	Define Laurent's series								
15.	If $f'(t)$ is continuous and $L{f(t)} = f(s)$ then find $L{f'(t)}$								
	PART – C (5 x 16= 80Marks)								

16. (a) Solve by the method of variation of parameters, CO1 - App (16)

$$y'' - 2y' + y = e^x \log x$$

Or

(b) Solve
$$(2x-1)^2 \frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} - 2y = 8x^2 - 2x + 3$$
 CO1-App (16)

17. (a) Verify Green's theorem for $\int_C [(xy + y^2)dx + x^2dy]$ where C is CO2- App (16) bounded by y = x and $y = x^2$

Or

- (b) Verify Stoke's theorem for $F = (x^2 + y^2)I 2xyJ$ taken around CO2 -Ana (16) the rectangle bounded by the lines $x = \pm a, y = 0, y = b$
- 18. (a) If f(z) is an analytic function with constant modulus, show that CO3 -Ana (16) f(z) is constant

2

- (b) Determine the analytic function f(z) = u + iv, if CO3 -Ana (16) $u - v = \frac{\cos x + \sin x - e^{-y}}{2(\cos x - \cosh y)}$ and $f(\pi/2) = 0$
- 19. (a) Verify Cauchy's theorem by integrating e^{iz} Along the boundary CO4-U (16) of the triangle with the vertices at the points 1 + i, -1 + i and -1 i.

Or

- (b) Find the Laurent's expansion of $f(z) = \frac{7z-2}{(z+1)z(z-2)}$ in the region CO4 -Ana (16) 1 < z + 1 < 3.
- 20. (a) Find the inverse Laplace transforms of the following: CO5- U (16) (i) $\log \frac{s+1}{s-1}$ (ii) $\log \frac{s^2+1}{s(s+1)}$ (iii) $\cos^{-1}\left(\frac{s}{2}\right)$ (iv) $\tan^{-1}\left(\frac{2}{s^2}\right)$
 - (b) Solve $ty'' + 2y' + ty = \cos t$ given that y(0) = 1. CO5 -U (16)