Question Paper Code:U2D05

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

First Semester

Biotechnology

R21UBT105- PRINCIPLES OF BIOORGANIC CHEMISTRY

		(Regulation	ons R2021)			
Dura	ation: Three hours		N	Maximum: 100 Marks		
		Answer Al	1 Questions			
		PART A - (5	x 1 = 5Marks			
1.	The organelle involve	CO1- U				
	(a) Nucleus	(b) Ribosome	(c) Lysozome	(d) Chloroplast		
2.	In Kagan's method	is the re	eactant.	CO2- U		
	(a) Crown ether	(b) Amino alcohol	(c)Glucose	(d) Amino acid		
3.	Hydroxyl ion is	·		CO2- U		
	(a) General acid	(b) General base	(c)specific acid	(d) Specific base		
4.	Disc to form stable comple	CO2- U				
	(a) F. H Westheimer	(b)D.S Kemp	(c)C.J. Corey	(d) C.J. Pedersen		
5.	vessels.	ons appear to stabili	ze walls of certain blood	CO1- U		
	(a) Co	(b)Cu	(c)Zn	(d) Ni		
PART - B (5 x 3= 15Marks)						
6.	Briefly explain the development	importance of pro	eximity effect in organic	model CO2-U		
7.	Mention the role of ze	eigler – Natta catalyst	in protein synthesis.	CO1-U		
8.	What are enzymes?	ive examples.		CO1-U		

CO2-U

9. Expand the term NAD and FAD.

10.	List	out the photosynthetic events in plants.	(CO1-U			
PART – C (5 x 16= 80 Marks)							
11.	(a)	Elaborate the proximity effect in bioorganic chemistry Or	CO2-U	(16)			
	(b)	Explain the major three biomolecules, that are the basis of bioorganic chemistry	CO2-U	(16)			
12.	(a)	Explore the possible chemical reactions involved in polypeptide chain elongation	CO2 U	(16)			
	(b)	Or Discover a method for effective synthesis of aminoacid and recovery of starting reactant using general reactions.	CO2 U	(16)			
13.	(a)	Summarize the reaction steps of breaking protein by chymotrypsin. Or	CO1- U	(16)			
	(b)	Explain the various types of catalysis with examples.	CO1-U	(16)			
14.	(a)	'Oxidoreduction is a reversible reaction and need nicotinamide coenzyme'. Predict the coenzyme and its action through an example.	CO6- App	(16)			
	(b)	Or 'Many hydrogenation-dehydrogenation processes are mediated by FAD coenzyme' Present the possibility of the involvement of FAD with another coenzyme NAD in biochemical reactions.	CO6- App	(16)			
15.	(a)	Mention the various metal ions linked to proteins. Predict the best metal ion suitable for oxygen transport with reasons Or	CO2- U	(16)			
	(b)	Show the reason why a model of energy transfer is required for detailed study of biological systems	CO2- U	(16)			