	Reg. No. :										
	Question Paper Code:U5C02										
B.E./B.Tech. DEGREE EXAMINATION, NOV 2024											
Fifth Semester											
BIO TECHNOLOGY											
21UBT502-BIOPROCESS ENGINEERING											
(Regulation 2021)											
Dura	ation: Three hours Maximum:	100 Mai	cks								
	PART A - $(10 \text{ x } 2 = 20 \text{ Marks})$										
1.	Write down the mechanisms by which the depth filters act.	CO1-L	J								
2.	Differentiate Packed bed reactor and Fluidized bed reactor.										
3.	Define Microbial Oxygen Demand.										
4.	If the dissolved oxygen tension is measured as 60% and the solubility o oxygen is $8.0 \times 10^{-3} \text{ Kg/m}^3$. What is the concentration of dissolved oxygen?										
5.	Define Structured model with example										
6.	Yeast cells can use either respiratory pathway and fermentative pathway. Justify.	CO2-A	pp								
7.	List the factors that affect the immobilized enzyme kinetics										
8.	What is Dam Kohler number (Da) and give its importance										
9.	Give the reason why Pichiapastoris is selected as host vector system	CO2-A	pp								
10.	Comment on the factors need to be consider while animal cell cultivation is done	CO3-A	'bb								
	PART – B (5 x 16= 80Marks)										

11. (a) Derive the equation to find exit age distribution by using pulse CO2-App (16) input experiment with a neat plots of C curve and E curve.

(b) In a bioreactor, a pulse input of a tracer substance was introduced, CO2-App (16) and the following concentration data was recorded over time:

t (min)	0	10	20	30	40	50	60	70
C (g/L)	0	1	3	6	8	7	4	1

(i) Calculate the mean residence time of the fluid in the bioreactor.

(ii) Construct the C-curve based on the given data. Plot the curve on a graph.

(iii) Tabulate and plot the E-curve using the given data.

12. (a) Explain the different method of determining mass transfer CO1-U (16) coefficient (kLa) with necessary derivation.

Or

- (b) Explain in detail about the non-fermentative method of kLa CO1-U (16) determination with neat diagram and model graph.
- 13. (a) Compute the necessary equations for the model for aerobic CO2-App (16) growth of the Yeast Saccharomyces cerevisiae.

Or

- (b) Describe the two-compartment model of bacterial growth with CO2-App (16) neat block diagram
- 14. (a) Design a fluidized bed reactor for the biocatalyst and explain their CO2-App (16) advantages over packed bed reactor

Or

- (b) Derive the relationship between the Thiele modulus and CO2-App (16) effectiveness factor of immobilized enzyme system
- 15. (a) Demonstrate with neat sketch about the cultivation of animal cells CO3-App (16) in Airlift Bioreactor

Or

(b) Choose the correct strategy to achieve high cell density CO3-App (16) cultivation in the reactor system with justifications