D	ът	
Kea	NA	•
Reg.	110.	•

Question Paper Code: UB706

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

Professional Elective

Biomedical Engineering

21BMV706 ROBOTICS IN MEDICINE

(Common to Biotechnology)

(Regulations 2021)

Duration: Three hours

Maximum: 100 Marks

Answer All Questions

PART A - (10x 2 = 20 Marks)

- 1. What are the different types of joints used in robotic systems? CO1-U
- 2. List the different types of movements associated with DOF in robotic systems CO1-U
- 3. What are the basic dynamic equations used in robotics for multi-DOF systems? CO1-U
- 4. Write the significance of kinetic and potential energy in Lagrangian analysis for CO1-U robot dynamics.
- 5. What ways can feedback be adjusted to reduce the steady-state error in a CO1-U control system?
- 6. In what situations would you increase the Derivative term to minimize CO1-U overshoot in a control system?
- 7. How would you apply the Hough transform to detect circles in a noisy image? CO1-U
- 8. What are the basic images processing techniques used for object recognition? CO1-U
- 9. How would you apply image segmentation to separate objects from the CO1-U background in a robotic vision system?
- 10. Describe the application of fuzzy control in biomedical engineering. CO1-U

PART – B (5 x 16= 80 Marks)

11. a Analyze how limitations in workspace can affect the effectiveness of CO1-U (16) articulated robots during intricate surgeries.

- b Consider a medical robot for a specific application, describing its CO1-U position analysis and how we can able to enhance surgical precision. (16)
- 12. a What are the challenges in solving forward and inverse kinematics for CO1-U (16) spatial parallel robots in medical applications, and how do these challenges impact surgical precision and control?

Or

- b What are the primary strategies medical robots employ to manage CO1-U (16) large-scale motions while ensuring stability and accuracy in differential motions, particularly in procedures involving soft tissue manipulation?
- 13. a Analyze the performance of PID controllers in controlling robotic arms CO2-U (16) used for minimally invasive surgery, focusing on case studies in robotic-assisted neurosurgery.

Or

- b Evaluate the impact of MIMO technology on surgical outcomes by CO2-U examining specific case studies in complex procedures like (16) laparoscopic surgery or orthopedic applications.
- 14. What are the challenges associated with integrating position, velocity, CO1-U and force sensors into medical robots, and how do these challenges (16) affect the performance of robotic surgical systems?

Or

In what ways can the manipulation of lighting conditions and the use CO1-U (16) of color images aid in the differentiation of anatomical structures during robotic-assisted surgeries, and how does this improve surgical outcomes?

15. a (i) Analyze specific case studies where fuzzy control has improved CO1-U (8) rehabilitation effectiveness and patient satisfaction.
(ii) How can fuzzy control systems be designed to handle the CO1-U (8) variability in patient responses during rehabilitation, and what are the implications for therapy effectiveness?

b (i) Design a hypothetical medical robotic system that incorporates both CO1-U (8) touch and range finding sensors. What specific features would enhance its accuracy and safety during surgical procedures?
(ii) What are the challenges and limitations associated with the CO1-U (8)

(ii) What are the challenges and limitations associated with the CO1-U (8) implementation of robotic systems in clinical diagnostics, and how can these challenges impact patient care?

UB706