	Reg. No. :													
		0							1	1				11
Question Paper Code: R3B03														
B.E./B.Tech. DEGREE EXAMINATION, NOV 2024														
Third Semester														
Biomedical Engineering														
R21UBM303- PRINCIPLES OF SIGNALS AND SYSTEMS														
(Regulations R2021)														
Dura	uration: Three hours Maximum: 100 Mar							ks						
Answer All Questions														
PART A - $(10x 2 = 20 \text{ Marks})$														
1.	Differentiate between causal and non-causal systems.								CC	CO1-U				
2.	Is the signal $x(t)=10\cos(2\pi t) + \sin(5\pi t)$ a periodic signal. If it is, determine the fundamental period.									CC)2-A	pp		
3.	Write the dirichlets conditions for Fourier series.								CO	CO1-U				
4.	Define Fourier transform pair.							CC	CO1-U					
5.	What are the tools used for analysis of LTI-CT systems?								CO	CO1-U				
6.	Illustrate the three elementary operations in block diagram representation of CO1-U continuous time system.													
7.	Define Sampling theorem.						CO1-U							
8.	State the convolution property of the Z-transform.							CO1-U						
9.	Distinguish between non-recursive and recursive systems.								CO	CO1-U				
10.	Determine the convolution of the signals $x(n) = \{2, -1, 3, 2\}$ and							CO	CO2-App					
$\mathbf{h}(\mathbf{n}) = \{1, -1, 1, 1\}.$														
		PART	– B ((5 x)	16=8	80M	arks))						
11.	(a) (i) Sketch the give power signal x($ \begin{array}{l} \text{ on signals and} \\ (t) = u(t) - u \end{array} $	l fin ı(t –	d wł - 15)	nethe	er it	is a	n ei	nergy	or or	CO	2-Ap	р	(8)
	(ii) Find the odd an	d even compo	onent	s of	the s	igna	1				CO	2-Ap	p	(8)
	$x(n) = \{1, 0, -1, 2, 3\}$	[}] ↑												

(b) Check whether the corresponding system is static, linear, time CO2-App (16) invariant and causal.

(i)
$$y(n) = \frac{1}{(x(n-1))} + x(n) + x(n+1)$$

(ii) $y(n) = x(n) \cdot x(n-1)$

- 12. (a) (i) Examine the Laplace transform of the given signal and sketch the CO3-App (8) associated ROC: $x(t) = e^{-3t}u(t) + e^{-2t}u(t)$
 - (ii) State and prove the Parseval's relation for continuous time CO1-U (8) signals using Fourier transform

Or

(b) (i) Determine the unilateral Laplace transform of the given signals. CO3-App (8) A) $x(t) = cos(\omega_0 t)$.

 $\mathbf{B}(t) = u(t)$

(ii) State and prove time shifting and linearity properties of the CO1-U (8) Laplace transform.

13. (a) A system is described by the differential equation CO3-App (16) $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 6y(t) = \frac{dx(t)}{dt} + 4x(t) \text{ and the input is} x(t) = e^{-t}u(t)$ Find

- i) The natural response for initial conditions $y(0) = 3; \frac{dy(t)}{dt} = 0$
- ii) Forced response.
- iii) Total response.

Or

(b) Evaluate the response y(t) of a continuous time system using CO3-App (16) Laplacetransform with transfer function H(s) = $\frac{1}{(s+2)(S+3)}$ for an input $x(t) = e^{-t}u(t)$.

2

14. (a) (i) Determine the DTFT of the given signals.

A) x(n) = u(n - k)B) $x(n) = \{1, -2, 2, 2\}$

(ii) Experiment the Z-transform of the sequence CO3-App (6)

- $x(n) = \{5, 3, 2, 4, 3, 1\}$ Or
- (b) (i) Consider an analog signal $x(t) = 5cos200\pi t$.Examine the CO3-App (10) minimum sampling rate to avoid aliasing effect. If sampling rate Fs =400Hz, determine the discrete time signal after sampling?
 - (ii) Solve the Z transform and find ROC of CO3-App (6)

$$x(n) = u(n) - u(n-3).$$

15. (a) (i) Formulate the linear convolution of $x(n) = \{1, 4, 3, 2\}$ and CO3-App (8) $h(n) = \{1, 3, 2, 1\}$

> (ii) In LTI discrete time systemy $(n) = \frac{3}{2}y(n-1) - \frac{1}{2}y(n-2) + \text{CO3-App}$ (8) x(n) + x(n-1) is given an inputx(n) = u(n). Evaluate the transfer function of the system.

Or

(b) Obtain the direct form I and Direct form II realization of the CO3-App (16) system described by the difference equation

y(n) + 0.75y(n-1) - 0.125y(n-2) = x(n) + 7x(n-1) + x(n-2).

R3B03