Question Paper Code: U3B06

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

Third Semester

Biomedical Engineering

21UBM306- DIGITAL LOGIC CIRCUITS

(Regulations 2021)

Duration: Three hours

Maximum: 100 Marks

Answer All Questions

PART A - (10x 2 = 20 Marks)

1.	Perform the following code conversions: $(AB2)_{16} \rightarrow (?)_2 \rightarrow (?)_8 \rightarrow (?)_{10}$.	CO2- App		
2.	Determine the following: $(27)_8 + (74)_8 = (?)_8$	CO2- App		
3.	Implement the half adder using OR gate.	CO2- App		
4.	Implement the AND gate using 2:1 multiplexer.	CO2- App		
5.	State the purpose of sequence generator in digital circuits	CO1- U		
6.	Differentiate RS flip flop and JK flip flop.	CO1- U		
7.	Classify static 1 and static 0 hazards.	CO1- U		
8.	Distinguish between mealy and moore machines.	CO1- U		
9.	Differentiate static and dynamic RAM.	CO1- U		
10.	Compare semiconductor memories and memories that use magnetic materials.	CO1- U		
PART – B $(5 \times 16 = 80 \text{Marks})$				
11.	(a) Find a minimal sum-of-products for the Boolean expression CO2	2-App (16)		

11. (a) Find a minimal sum-of-products for the Boolean expression CO2-App (16) $f(w, x, y, z) = \sum m(1, 2, 3, 7, 8, 9, 10, 11, 14, 15)$ using tabulation method.

Or

(b) Simplify the expression $y=\pi$ (0,1,4,5,6,8,9,12,13,14) using CO2-App (16) Karnaugh map method

12.	(a)	Design a 4-bit parallel adder/subtractor and explain the operation with a logic diagram.	CO2-App	(16)	
Or					
	(b)	Implement the Boolean function using 8:1 multiplexer $f(A, B, C, D) = \sum m(1,3,4,11,12,13,14,15).$	CO2-App	(16)	
13.	(a)	Design SR, JK, D and T flip flops Or	CO2-App	(16)	
	(b)	Design shift registers using flip flops.	CO2-App	(16)	
14.	(a)	Analyze fundamental mode with pulse mode circuits and justify it Or	CO3-Ana	(16)	
	(b)	Design a serial binary adder using D flip flops and T flip flop for the numbers 1011 and 0110 and also justify your answer.	CO3-Ana	(16)	
15.	(a)	Design a Binary-to-Gray converter similar to basic ROM Structure Or	CO2- App	(16)	
	(b)	Design a combinational circuit using a ROM. The circuit accepts a three bit number and outputs a binary number equal to the square of the input number.	CO2- App	(16)	