]	Reg. No. :											
	Question	Paper	r Co	de:	R2 I	M11	1					
B.E./I	B.Tech. DEGRE	EE EXAI	MINA	ATIO	N, N	IOV	2024	4				
	Sec	cond Sen	nestei	ſ								
A	Artificial Intellig	gence and	l Mac	hine	Lea	rning	<u> </u>					
R21UMA211-FOUR	IER SERIES, P	ARTIAL	DIF	FER	ENT	IAL	EQU	JAT	ION	S AN	1D	
	COMP	LEX AN	NALY	SIS								
	(Reg	ulations	R202	(1)								
ation: Three hours							M	axim	ium:	100	Mark	KS
	Answe	er ALL (Questi	ions								
	PART A -	- (10 x 1	= 10	Marl	ks)							
If a function $f(x)$ is every terms	en, its Fourier e	xpansion	cont	ains	only						CO	5- U
(a) Sine	(b)Cosine		(c)ta	.n			(0	d) No	one o	f the	se	
The Fourier constant b	o_n in $(-\pi,\pi)$ for x s	sin x is _								C	CO1-	App
(a) x^2	(b)3x		(c)0			((d) 1				
The roots of $(D^2 - 4D^2)$	D' $+3D'^2$) z = 0	is	·							C	CO2-	App
(a) (-1, 3)	(b) $(1, -3)$		(c) (-1,	, -3)		((d) (1, 3)			
The complete solution	of $z = px + qy$	+ pq is -								C	CO2-	App
(a) $z = ax + by + ab$	(b) $z = ax - by$	y-ab	(c) z	z = ax	z + by	-ab	• ((d) z	=ax	-by	+ab	
Classify the equation	$u_{xx}+u_{yy}=0$ is _									C	CO3-	App
(a) parabolic	(b)hyperbo	olic	(c) elli	ptic			(d) c	yclio	C		
In one dimensional h	eat equation $\frac{\partial \iota}{\partial \iota}$	$\frac{u}{t} = \alpha^2 \frac{\partial^2}{\partial x}$	$\frac{u}{\alpha^2}$, α^2	is t	he _		of			C	CO3-4	App
the substance.												
(a) diffusivity (b)) specific heat	(c) the	ermal	cond	ducti	vity		(d) c	lensi	ty		
The function $f(z) = \frac{1}{z}$	$\frac{1}{x^2+4}$ is not analy	tic at $z =$	=	_							CO	5- U

c) 2i

 $(d) \pm 2i$

Duration: Three hours

(a) 2

(b) -2

1.

2.

6.

8. The function $f(z) = \frac{1}{z^2+4}$ is not analytic at z =_____

CO6- U

(a) 2

(b) -2

c)2i

 $(d)\pm 2i$

9. The value of $\int_{C} \frac{dz}{z+2}$, c: |z| = 1 is _____

CO6- U

(a) $2\pi i$

(b) $-2\pi i$

(c) $4\pi i$

(d) 0

10. Simple pole is a pole of order _____

CO6- U

(a) 1

(b) 2

(c) 3

(d) 4

PART - B (5 x 2= 10 Marks)

11. State Dirichlet's conditions

CO1- App

12. Solve $\sqrt{p} + \sqrt{q} = 1$

CO2- App

13. Classify the differential equation $3 \frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 6 \frac{\partial^2 u}{\partial y^2} - 2 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} - u = 0$ CO3-App

14. Show that the function $e^x \sin y$ is harmonic

CO4- App

15. Find the Residues of $f(z) = \frac{z+1}{z(z-2)}$

CO5- App

 $PART - C (5 \times 16 = 80 Marks)$

16. (a) (i) Find the Half range cosine series for f(x) = x in $(0, \pi)$. CO1- App (8) Deduce that $\sum_{n=odd}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{96}$

(ii) Find the Fourier series of $f(x) = x + x^2$ in $(-\pi, \pi)$ of periodicity 2π . Hence deduce that the value of the sum CO1-App (8) $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$

Or

(b) (i) Compute first two harmonics of the Fourier series for the CO1-App (8) following data.

X	0	2	4	6	8	10	12
У	10	12	20	24	26	17	10

(ii) Find the Half range cosine series for f(x) = 2x in $(0, \pi)$ CO1-App

(8)

17. (a) (i) Solve $(D^2 - 5DD' + 6D'^2)z = e^{x+y} + \sin(x-y)$ CO2-App (8)

(ii) Solve x(y-z)p + y(z-x)q = z(x-y) CO2-App (8)

Oı

(b) (i) Solve $Z = px + qy + p^2 - q^2$ CO2-App (8)

(ii) Form a PDE by eliminating arbitrary functions from CO2-App (8) $\varphi(x^2 + y^2 + z^2, x + y + z) = 0.$

18. (a) A bar of 10cm long with insulated sides has its ends A and B CO3 -App (16) kept at 50° c and 100°c respectively. Until steady state condition prevails. The temperature at A is then suddenly raised to 90°c and at the same instant B is lower to 60°c and maintained thereafter. Find the subsequent temperature distribution in the bar.

Or

- (b) If a string of length 'l' is initially at rest in its equilibrium CO3- App (16) position and each of its points is given velocity, $\frac{\partial y}{\partial t} = V_0 \sin^3 \frac{\pi x}{l}, 0 < x < l, \text{ Determine the displacement function}$ y(x,t)
- 19. (a) (i) Using Milne Thomson method, find the Analytic function CO4-App (8) given that $u = \frac{\sin 2x}{\cosh 2y \cos 2x}$
 - (ii) Find the image of |z-1| = 1 under the transformation $w = \frac{1}{z}$ CO4-App (8)

Or

- (b) (i) Find the bilinear transformation from -1,0,1 to 0,i,3i CO4-App (8)
 - (ii) If f(z) = u +iv is a regular function of z in a domain D the CO4-App (8) following relation hold in D. $\nabla^2 |f(z)|^2 = 4|f'(z)|^2$

20. (a) (i) Evaluate using Cauchy's Integral formula for CO5-App

$$f(z) = \int_C \frac{2z-1}{(z+1)(z-3)} dz$$
, where 'C': $|z| = 2$.

(ii) Find the Laurent's series of $f(z) = \frac{7z-2}{z(z+1)(z-2)}$ valid CO5-App (8) in the region 1 < |z+1| < 3

Or

(b) Evaluate: $\int_{-\infty}^{\infty} \frac{\mathbf{x}^2}{(\mathbf{x}^2 + 4)(\mathbf{x}^2 + 9)} \mathbf{dx}$, using contour integration. CO5-App (16)

(8)