A		Reg. No. :											
	[Question	Paper	Cod	e: U2	2M1	1						
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2024												
	Second Semester												
	Artificial Intelligence and Machine Learning												
21UMA211-FOURIER SERIES, PARTIAL DIFFERENTIAL EQUATIONS AND													
COMPLEX ANALYSIS													
(Regulations 2021)													
Duration: Three hours Maximum: 100 Ma											rks		
	Answer ALL Questions												
	PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$												
1.	If a function f(x) is even, its Fourier expansion contains only terms						-				CO	6- U	
	(a) Sine	(b) Cosine		(c) tan				(d)) Noi	ne of	thes	se	
2.	cos x is a periodic function with period								CO1- App				
	(a) π	(b) 2π		(c) π/	3				(d)	$2\pi/$	'3		
3.	The PDE of all planes	igin is _	<u> </u>					CO2-App					
	(a) $z = px + qy^2$	(b) z= px- q	y^2	(c) z=	= px+q	у			(d)	Z=]	ox- q	у	
4.	The general solution o	CO2-App											
	(a) $f_1(y + 3x) + f_2(2y)$	(b) $f_1(3y + x) + f_2(y + 2x)$											
	(c) $f_1(y-3x) + f_2(2y + f_2)$	(d) $f_1 (3y - x) + f_2 (y - 2x)$											
5.	$Au_{xx}+Bu_{xy}+Cu_{yy}=f(x)$, y) is parabolic	c if	·	_							CO	6- U
	(a) B^2 -4AC<0	(b) B^2 -4AC=	= 0	(c) B	2 -4AC	>0			(d)	\mathbf{B}^2 -	4AC	≠0	
6.	An insulated rod of length 60 cm has its ends at A and B kept at 20°C CO3-A and 80°C respectively, then its steady state solution is							Арр					
	(a) x-20	(b)4x+20		(c) x-	+20				(d) x+	-60		
7.	The critical point of th	e transformatio	on $w = z$	$z + \frac{1}{z}a$	re						C	04-	App
	a) ±1	b) ±2		a) ±1	L				b)	±2			

8.	Find the fixed points of	$f(z) = \frac{1}{z - 2i}$			CO4-App						
	(a) i	(b) 2i	(c) 3i	(d) 0							
9.	The residue of $f(z) = \frac{4}{z^3(z-2)}$ at its simple pole is										
	(a) $\frac{4}{7}$	(b) $\frac{3}{4}$	(c) $\frac{1}{7}$	(d) $\frac{3}{4}$							
10.	The value of $\int_{C} \frac{dz}{z+2}$, c	: z = 1 is			CO6-U						
	(a) 2πi	(b) 0	(c) 4πi	(d) 0							
	PART - B (5 x 2 = 10 Marks)										
11.	. State Dirichlet's conditions										
12.	Form the PDE from $z = ax^n + by^n$.										
13.	Classify $4u_{xx} + 4u_{xy} + u_{yy} - 6u_x - 8u_y - 16u = 0$										
14.	Find the fixed point of	$w = \frac{2z - 5}{z + 4}$			CO4-App						
15.	$\mathbf{E}_{\mathrm{res}}$ has to $\begin{bmatrix} \mathbf{z} & \mathbf{z} \end{bmatrix}$	\mathbf{C}			CO5–App						

5. Evaluate
$$\int_{c} \frac{z}{z-2} dz$$
 where C is $|z| = 2$

 $PART - C (5 \times 16 = 80 Marks)$

16. (a) (i) Express $f(x) = (\pi - x)^2$ as a Fourier series of period 2π in CO1-App (8) the interval $0 < x < 2\pi$.

(ii) The table of values of the function $y = f(x)$ is given below:									CO1-App	(8)
x:	0	T/6	T/3	T/2	2T/3	5T/6	Т			
y:	1.98	1.30	1.05	1.30	-	-0.25	1.98			
					0.88					

Find a Fourier series up to the third harmonic to represent f(x) in terms of x

Or

(b) (i) Find the Half range cosine series for $f(x) = x(\pi - x)$ in $(0, \pi)$. CO1- App (8) Deduce that $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} \dots = \frac{\pi^4}{90}$

(ii) The table of values of the function y = f(x) is given below: CO1-App (8)

X	0	$\pi/3$	$2\pi/_{3}$	π	$4\pi/_{3}$	$5\pi/_{3}$	2π
y:	1.0	1.4	1.9	1.7	1.5	1.2	1.0

Find a Fourier series upto the third harmonic to represent f(x) in terms of x

17. (a) (i) Solve
$$(D^2 - 5DD' + 6D'^2)z = e^{x+y} + sin(x-y)$$
 CO2 -App (8)

(ii) Solve
$$x(y-z)p + y(z-x)q = z(x-y)$$
 CO2 -App (8)

Or
(b) (i) Solve
$$Z = px + qy + p^2 - q^2$$
 CO2 - App (8)
(ii) Form a PDE by eliminating arbitrary functions from CO2 - App (8)
 $\varphi(x^2 + y^2 + z^2, x + y + z) = 0..$

18. (a) A bar of 30cm long with insulated sides has its ends A and B kept CO3-App (16) at 20° c and 80°c respectively. Until steady state condition prevails. The temperature at A is then suddenly raised to 60°c and at the same instant B is lower to 40°c and maintained thereafter. Find the subsequent temperature distribution in the bar.

- (b) A String is stretched and fastened to two points l apart.Motion is CO3-App (16) started by displacing the string into the form y=K(lx-x²) from which it is released at t=0.Find the displacement of any point at a distance 'x' at any time 't'
- 19. (a) (i) Using Milne Thomson method, find the Analytic function CO4-App (8) given that $u = \frac{\sin 2x}{2}$

$$\cosh 2y - \cos 2x$$

(ii) Find the bilinear transformation from -1,0,1 to 0,i,3i CO4-App (8)

(b) (i) Find the image of |z-1| = 1 under the transformation CO4-App (8)

$$w = \frac{1}{z}$$

(ii) If f(z) is analytic whose real part is constant must itself be a CO4-App (8) constant

20. (a) (i) Evaluate using Cauchy's Residue theorem for CO5-App (8)

$$f(z) = \int_{C} \frac{3z^2 + z - 1}{(z^2 - 1)(z - 3)} dz$$
, where 'C' is the circle $|z| = 2$.
(ii) Evaluate $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series valid for the CO5-App (8)
region
 $1 < |z| < 3$.
(b) Using contour integration, to find the value of $\int_{0}^{2\pi} \frac{d\theta}{13-5\cos\theta}$ CO5-App (16)