С		Reg. No. :										
	Question Paper Code: UG405											
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2024											
	Fourth Semester											
	Artificial Intelligence & Machine learning											
	21UAM40	95 - FUNDAME	NTAL	S OF MAC	CHIN	e le	EARI	NINC	Ĵ			
		(Re	gulatio	ns 2021)								
Dura	ation: Three hours						N	/laxi1	mum	n: 100) Ma	rks
		Answ	ver All	Questions								
		PART A	- (5 x	1 = 5 Mark	xs)							
1.	The term machine leas	rning was coine	d in wh	ich year?							CO	1 - U
	(a) 1958	(b) 1959		(c) 19	960			((d) 1	961		
2.	The Unsupervised learning problems can be grouped as					CO	1 - U					
	(a) Clustering	(b) Association	n	(c) Both ((a) ar	nd (b) ((d) N	one	of th	e Ab	ove
3.	What can help to reduce overfitting in an SVM classifier? CO1-U				1 - U							
	(a) High-degree polynomial features (b) Setting a very low learning rate											
	(c) Use of slack variable	oles		(d) Norm	alizin	g the	e data	a				
4.	Clustering is a										CO	1 - U
	(a) Supervised Learnin	ng		(b) Unsur	pervis	ed le	earnii	ng				
	(c) Reinforcement Learning			(d) None of the above								
5.	Which of the following is an application of reinforcement learning?CO1-U				1 - U							
	(a) Topic modeling			(b) Recor	nmen	datio	on sy	stem	S			
	(c) Pattern recognition	1		(d) Image	class	sifica	tion					
PART - B (5 x 3 = 15 Marks)												
6.	What is Machine Le learning?	earning? What a	are the	important	t obje	ective	es of	f Ma	chin	e	CO	1-U
7.	Distinguish Overfit, Underfit and Best fit. CO1-U				1 - U							
8.	State the parameters in a Perceptron network and its significance CO1-U				1 - U							
9.	What is meant by Principal Component Analysis?CO1-U				1 - U							

10. What are the Applications of Reinforcement Learning?

PART – C (5 x 16= 80 Marks)

 11. (a) Illustrate with an Example of Supervised, Unsupervised and CO1-U (16) Reinforcement Learning and Discuss any four Examples of Machine Learning Applications

OR

- (b) Explain in detail Theory of Generalization and Generalization CO1-U (16) Bound.
- 12. (a) Consider the five weeks sales data (in Thousands) is given as CO2- App (16) shown. Apply Linear Regression to predict the 7th and 12th week sales.

Week X1	Sales (in Thousands) Y1
1	1.2
2	1.8
3	2.6
4	3.2
5	3.8
	Or

(b) Consider the four weeks sales data is given as shown. Apply CO2-App (16) Multiple Regression for the values given in table where weekly sales along with sales for products x1 and x2 are provided.

e	1	1
X1 Product1 Sales	X2 Product2 Sales	Y Weekly Sales
1	4	1
2	5	6
3	8	8
4	2	12

13. (a) Assume that the Neurons have a Sigmoid Activation Function, CO2-App (16) Perform a Forward pass and a Backward pass on the Network. Assume that the actual output of Y is 0.5 and Learning rate is 1. Perform another Forward pass.

CO1-U

 (b) Apply Classification and Regression Trees for the data set. The CO2-App (16) Target Attribute 'Job Offer' has 7 instances as Yes and 3 instances as No.

OR

CGPA	Interactive	Practical Common		Job	
		Knowledge	Skills	Offer	
>=9	Yes	Very Good	Good	Yes	
>=8	No	Good	Moderate	Yes	
>=9	No	Average	Poor	No	
<8	No	Average	Good	No	
>=8	Yes	Good	Moderate	Yes	
>=9	Yes	Good	Moderate	Yes	
<8	Yes	Good	Poor	No	
>=9	No	Very Good	Good	Yes	
>=8	Yes	Good	Good	Yes	
>=8	Yes	Average	Good	Yes	

14. (a) Cluster the following data points into three clusters, where the CO2-App (16) point are A1(2,10), A2(2,5),A3(8,4), B1(5,8), B2(7,5), B3(6,4), C1(1,2), C2(4,9).

OR

(b) Given the following data, use Principal Component Analysis to CO2-App (16) reduce the dimension from 2 to 1.

Feature	Example1	Example2	Example3	Example4
Х	4	8	13	7
у	11	4	5	14

- 15. (a) Explain in detail Passive Reinforcement Learning with Examples. CO1-U (16) OR
 - (b) Explain in detail how Utility Function works well in CO1-U (16) Reinforcement Learning.

UG405