	Reg. No:				
	Question Paper Code :R3M28				
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2024				
	Third Semester				
	Artificial Intelligence And Data Science				
	R21UMA328-DISCRETE MATHEMATICS				
	(Common to CSD)				
	(Regulations R2021)				
Dura	ation: Three hours Maximum: 1	100	Ma	rks	
	PART A - $(10 \text{ x } 2 = 20 \text{ Marks})$				
1.	Compute PDNF for $(P \lor \neg Q)$	CC	D1-7	App	
2.	Derive <i>s</i> from the premises $P \lor Q$, $Q \to S$ and $\neg P$	CC	D1-2	App	
3.	Compute the solution of the recurrence relation $a_n - 9a_{n-2} = 0$.	CC	02-7	App	
4.	Iow many different word are there in the word MATHEMATICS.			CO2-App	
5.	Define Semi group and give an example	CC)6-I	U	
6.	Find the order of $[3],[4] \& [6]$ element in (Z_7, \otimes_7)	CC)3-/	Арр	
7.	Draw a graph with degree sequence 1, 2,3,4,2. If not Explain otherwise draw a graph.	erwise draw a CO4-Aj		Арр	
8.	Write the adjacency matrix for the graph K ₄ .	CO6-U			
9.	Draw a Hassee diagram for a poset A = $\{2,4,6,5,10,30,/\}$.	CO6-U			
10.	Prove that $a \wedge (a \vee b) = a$.	CC)6-I	IJ	
	PART – B (5 x 16= 80 Marks)				
11.	(a) (i) Calculate PCNF and PDNF for $(\neg P \rightarrow R) \land (Q \leftrightarrow P)$ CO1-A	рр	(8)	
	(ii) Using the rules of inference derive & using CP Rule. CO1-A $P \rightarrow (Q \rightarrow S), \neg R \lor P, Q \Rightarrow R \rightarrow S$	рр	(8)	

	(b)	(i) Prove the following by direct Method. $P \rightarrow (Q \land R), (Q \lor S) \rightarrow U, P \lor S \Rightarrow U$	CO1-App	(8)
		(ii)Use the direct method to show that $R \rightarrow \neg Q, R \lor S, S \rightarrow \neg Q, P \rightarrow Q \Rightarrow \neg P$	CO1-App	(8)
12.	(a)	(i) Solve: $a_n - 6a_{n-1} + 8a_{n-2} = (2)^n$, $a_0 = 1$ $a_1 = 5$	CO2-App	(8)
		(ii) Calculate the number of positive integers not exceeding 200 that are divisible by 2,3,5 or by 7	CO2-App	(8)
	(b)	(i) How many prime numbers not exceeding 100 are there?	CO2-App	(8)
		(ii) Using generating functions Solve $a_n = 5a_{n-1} + 3^n$, $a_0 = 3$	CO2-App	(8)
13.	(a)	(i) State and prove Lagrange's theorem.	CO3-U	(8)
		(ii) Let G be a finite group of order 'n' and H be any subgroup of G. Then Show that the order of H divides the order of G. (i.e)	CO3-U	(8)

Or

O(H) / O(G)

G

- (b) (i) Let G and G' be any two groups with identities e and e'(8) CO3-U respectively. If $f: G \rightarrow G'$ be a homomorphism. Then Prove that kerf is a normal subgroup
 - (ii) Prove that A group G is abelian iff $(a * b)^2 = a^2 * b^2$ CO3-U (8)

14.	(a)	(i) Verify that following are isomorphic graph are not.	CO4-App	(8)
		$\begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $		
		G'		

(ii) Prove that a simple graph with n vertices must be connected if CO4-U(8) (n-1)(n-2)² edges. it has more than

(b) (i) Identify the Hamiltonian path and Hamiltonian cycle, if it exist in CO4-App (8) each of the graphs given below. Also identify which graph is hamiltoinan

(ii) Prove that a given connected graph is Eulerian if and only if all the CO4-U (8) vertices of G are of even degree

15.	(a)	(i) State and prove DeMargons law for lattices.	CO5-App	(8)
		(ii) Prove that following are equivalent (i) $a \le b$ (ii) $a \land b' = 1$ (iii) $a' \lor b = 1$ (iv) $b' \le a'$	CO5-App	(8)
	(b)	Or (i) Show that in any Boolean algebra (a+b)(a'+c) = ac + a'b + bc = a'b + bc	CO5-App	(8)
		(ii) State and prove isotonic property for Lattices.	CO5-App	(8)