		Reg. No:									
		<u> </u>		1 1	1	<u> </u>					
		Question Paper	· Code:U3	3M28							
	B.E.,	B.Tech. DEGREE EXA	AMINATIO	N, NOV 2	.024						
		Third Se	mester								
		Computer Scien	ce and Desig	gn							
		21UMA328-DISCRET	TE MATHEN	MATICS							
	(Common	to Aritificial Intelligen	ce & Data So	cience Eng	gineering	g)					
		(Regulation	ons2021)								
Dura	ation: Three hours		Maximum: 100 Marks								
		Answer All	Questions								
		PART A - (10x	1 = 10Mark	s)							
1.	What is the value of x after this statement, assuming the initial value of x is $CO6-U$ 5? If x equals to one then $x=x+2$ else $x=0$.										
	(a) 1	(b) 3	(c) 0		(d) 2						
2.	The statement," Every comedian is funny" where $C(x)$ is "x is a comedian" CO1- App and $F(x)$ is "x is funny" and the domain consists of all people.										
	(a) $\exists x (C(x) \land F(x))$	(b) $\forall x (C(x) \land F(x))$	$(c) \exists x (C(x))$	$\rightarrow F(x)$	(d) ∀x	x(C(x	$(x) \rightarrow$	F (x)))		
3.	What is the base case	= 3?			C	O2- A	App				
	(a) 652 > 189	(b) 42 < 132	(c) 343 >	27	(d)	42 ≤	431				
4.	The numbers between	en 1 and 520, includin	g both, are	divisible l	by 2 or	6 is	C	O2- <i>i</i>	App		
	(a) 349	(b) 54	(c) 213	(d	1) 303						
5.	A group (M, *) is said	d to be abelian if						CO	5- U		
	(a) $(x + y) = (y + x)$	(b) $(x * y) = (y * x)$	(c)(x+y)	y) = x	(d) (y	/ * x)	=(x)	(x + y))		
6.	Intersection of subgro	oups is a						CO	5- U		
	(a) group	(b) subgroup	(c) semig	roup	(d)	cycli	c gro	group			

(c) star graph

7. In a _____ the degree of each and every vertex is equal.

(b) point graph

CO6- U

(d) Euler graph

(a) regular graph

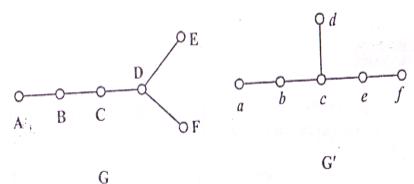
8.	Ever	ry complete bipar	CO6- U								
	(a) p	lanar graph	(d) subgraph								
9.	Whic	ch of the following	CO6- U								
	(a) Io	dentity Law	mplemen	nent Law							
	(c) C	Complement Law		(d) Idempoten	(d) Idempotent Law						
10.	A	is a Bo		CO6- U							
	(a) L	Literal	tifier								
			PART – B (5	x 2= 10Marks)							
11.	Find	the value of the	CO1- App								
12.	Wha	at is the generatin	CO2-	CO2- App							
13.	Defi	ine cyclic group	CO	CO6- U							
14.	Drav	w K ₅ complete	CO6- U								
15.	State	e distributive latti	CO6- U								
			PART – C	(5 x 16= 80Marks))						
16.	(a)	(i) Find PDNF a		CO1 -App	(8)						
		(ii) Prove that ((is a tautology.) CO1 -App	(8)							
			Or								
			$A \longrightarrow \neg D$ is a cor $\neg A and D \longrightarrow \neg C$ by usi		_	s CO1 -App	(8)				
		(ii) Show that th	at $\exists (x) \longrightarrow \forall x Q(x) \Rightarrow$	$\forall x (P(x) \longrightarrow Q(x)).$		CO1 -App	(8)				
17.	(a)	(i) Solve: a_{n+2}	$+3a_{n+1} + 2a_n = 3$	B^n , $a_0 = 0$, $a_1 = 1$	L	CO2 -App	(8)				
		(ii) Using genera	ating functions Solve	,		CO2 -App	(8)				
		$a_n - 3a_{n-1} + 2$	$a_{n-2} = 0, n \ge 2a_0 =$	$= 2, a_1 = 3.$							

Or

- (b) (i) Prove that by using mathematical Induction $\frac{1}{1.2} + \frac{1}{2.3} + \text{CO2 -App}$ (8) $\frac{1}{3.4} + \dots + \frac{1}{n(n+1)} = \frac{n}{(n+1)}$
 - (ii) Out of 100 students in a college, 38 play tennis, 57 play cricket and 31 play hockey, 9 play cricket and hockey, 10 play hockey and tennis, 12 play tennis and cricket. (8)

How many plays (1) All three games.

- (2) Atleast two game.
- (3) Hockeyor cricket but not tennis (Assume that each student plays atleast one game.)
- 18. (a) (i) Show that $(Q^+,*)$ is an abelian group where * is defined as a*b CO3- App (8) $= ab/2, \forall a, b \in Q^+$.
 - (ii) S.T by using an example "the union of two subgroup of a CO3- App (8) group G need not be a subgroup".


Or

(b) (i) State and prove Lagrange's theorem.

CO3- App (8)

(ii) Prove that $(\boldsymbol{a}*\boldsymbol{b})^2 = \boldsymbol{a}^2*\boldsymbol{b}^2$ (ffyioabelian)

- CO3- App (8)
- 19. (a) (i) Verify that following are isomorphic graph are not
- CO4- App (8)

(ii) Prove that a simple graph with n vertices must be connected if CO4- App (8) it has more than $\frac{(n-1)(n-2)}{2}$ edges.

(b) (i) Define Isomorphism between the two graphs. Are the simple CO4- App (8) graphs with the following adjacency matrices isomorphic?

						_	-		-				
Γ0	1	0	0	0	17		Γ0	1	0	0	0	1٦	
1	0	1	0	1	0	and	1	0		0		1	
0	1	0	1	0	1		0	1	0			0	
0	0	1	0	1	0		0	0	1	0	1	0	
0	1	0	1	0	1		0	0	1	1	0	1	
L_1	0	1	0	1	0		L_1	1	0	0	1	0]	

- (ii) Prove that a given connected graph is Eulerian if and only if CO4- App (8) all the vertices of G are of even degree.
- 20. (a) (i) State and prove the distributive inequalities of a Lattice. CO5- App (8)
 - (ii) State and prove De Morgan's law for Boolean algebra. CO5- App (8)

Or

- (b) (i) Show that in a complemented distributive lattice, the De CO5-App (8) Morgan's laws hold good.
 - (ii) Show that in any Boolean algebra (a + b)(a' + c) = ac + CO5- App (8) a'b + bc = ac + a'b

$$\begin{array}{ccc}
\mathbf{a} & \mathbf{a} + \sqrt{\mathbf{a}^2 - \mathbf{y}^2} \\
\int & \int \\
0 & \mathbf{a} - \sqrt{\mathbf{a}^2 - \mathbf{y}^2}
\end{array} \mathbf{xy} \mathbf{dx} \mathbf{dy}$$