	Reg. No. :	
Question Paper Code: U7E02		
B.E./B.Tech. DEGREE EXAMINATION, NOV 2024		
	Seventh Semester	
	Artificial Intelligence and Data Science	
	21UAD702-NATURAL LANGUAGE PROCESSING	
	(Regulations 2021)	
	PART A - $(10 \text{ x } 2 = 20 \text{ Marks})$	
1	What are the major tasks performed in NLP applications?	CO1-U
2	Apply POS Tagging for the following sentence	CO2-App
"We belong to AI&DS department"		
3	Define FST.	CO1-U
4	Provide two examples of how corpora analysis can benefit language model training in NLP applications.	CO2-App
5	What are the functions of Statistical Estimators in NLP?	CO1-U
6	Perform a t-test to compare the average word lengths between two text samples.	CO2-App
7	Apply methodological preliminaries to set up a basic NLP pipeline for text classification. List the key steps involved.	CO2-App
8	Briefly describe an information-theoretic approach to disambiguation in NLP.	CO1-U
9	What is the basic principle behind a Markov model?	CO1-U
10	Explain how probabilities are used in Hidden Markov Models.	CO1-U
	PART - B (5 x 16= 80 Marks)	
11 (a)	Discuss why ambiguity makes NLP difficult, and propose methods for CC resolving syntactic and semantic ambiguities in text processing.	D1-U (16)

Or

(b) Explore the concept of cross-entropy in the context of language models. CO1 -U (16) Apply it to evaluate and compare the performance of various models, discussing the implications of your findings for improving model accuracy. 12 (a) Design a method to detect and handle character encoding mismatches in CO2-App (16)
a dataset containing texts from multiple languages. Include considerations for both automatic detection and manual intervention

Or

- (b) Develop a Finite State Transducer (FST) for a language that exhibits CO2-App (16) complex inflectional and derivational patterns. Discuss the design considerations, implementation challenges, and potential applications of your FST model. Provide detailed examples to support your discussion.
- 13 (a) Explain the concept of collocations, types, and their role in enhancing the CO1-U (16) performance of NLP tasks.

Or

- (b) Explain the principles of Pearson's chi-square test and likelihood ratios, CO1-U (16) and discuss how they are applied to assess word associations in a corpus.
- 14 (a) Apply the information-theoretic approach to disambiguate a set of CO2-App (16) ambiguous words. Calculate measures such as entropy and mutual information for each sense and discuss how these measures help in selecting the most appropriate sense.

Or

- (b) Implement a multi-method disambiguation system combining Bayesian CO2-App (16) classification, dictionary-based, and translation-based approaches. Apply it to a set of ambiguous words and assess the improvement in sense resolution accuracy compared to using each method individually.
- 15 (a) Define Markov Modeling in NLP with detail explanation and diagram. CO1-U (16)

Or

(b) Describe the methods used for parameter estimation in Hidden Markov CO1-U (16)
Models, such as the Baum-Welch algorithm. Discuss how these methods
adjust parameters to maximize the likelihood of the observed data.