		Reg. No:							
					7				
		Question Pa	per Code: U4	M24					
	B.E./	B.Tech. DEGREE	EXAMINATION,	NOV 2	024				
		Fourt	h Semester						
		Bio Medio	cal Engineering						
	21UMA424	- PROBABILITY	AND INFERENT	IAL ST	ATIST	ICS			
		(Common te	o Biotechnology)						
		(Regul	ations 2021)						
Dura	ation: Three hours				Maxin	num: 1	100 N	Marł	KS
		Answer A	ALL Questions						
		PART A - (1	0 x 1 = 10 Marks)	I					
1.	Probability of an imp	ossible event is					(206	- U
	(a) 1	(b) 10	(c) 0		(d) (∞			
2.	For Binomial distribution	tion mean is 6 and	variance is 2 find	P[X=x]			CO)1- A	٩p
	a) $9c_x \frac{2^x}{3} \frac{1}{3}^{n-x}$	(b) $6c_x \frac{1}{3}^x \frac{2}{3}^{n-x}$	(c) $2c_x \frac{1}{2}^x \frac{1}{2}^{n-x}$		(d) r	none of	f the	abo	ove
3.	If X and Yare indepe	ndent random varia	bles then find Cov	v(X,Y)			(206	- U
	(a) 0	(b) 1	(c) -1		(d) (∞			
4.	The Conditional dens	sity function of Y g	iven X is				(206	- U
	(a) f(x)	(b)f (y/x)	(c)f (x/y)		(d) f	f(y)			
5.	Auto Correlation fun	ction is funct	tion				(206	- U
	(a) Odd	(b)Even (c) Neither Even N	lor Odd	(d) I	None of	of the	e abo	ove
6.	If the Random Proc function $R(\tau) = 16 + 9$ process is	ess {X(t)} with m $\partial e^{- \tau }$ Then the mean	ean has Auto co an square Variano	orrelatio	n e		CO)3- A	\pp
	(a) 16	(b) 25	(c) 29		(d)4				

7. The system is said to be stable if

(a)
$$\int_{-\infty}^{\infty} h(t) dt < \infty$$
 (b) $\int_{-\infty}^{\infty} h(t) dt > \infty$ (c) $\int_{-\infty}^{\infty} h(t) dt > 0$ (d) None of the above
8. The average power of the auto correlation function is $R_{xx}(\tau)=3e^{-3|\tau|}$ CO4- App
(a)3 (b)6 (c)2 (d) 0
9. Large sample size is ______ CO6- U
(a) 30 (b) >30 (c)<30 (d) None of the above
10. F-test is used to test for equality of ______ CO6- U
(a) Sample Mean (b) Variance (c) Population mean (d) All the above
PART - B (5 x 2= 10 Marks)
11. A Continuous random variable with density function is given by f(x) = 6x(1-x), 0 \le x \le 1 CD6- U is PDF or not.

12. The joint PDF of the RV (X,Y) is given by CO2-U $f(x,y) = \begin{cases} e^{-(x+y)}, & 0 < x, y < \infty \\ 0, & otherwise \end{cases}$

Are X And Y Independent?

- 13. The power spectrum of a WSS process X (t) is given by $S_{xx} (\omega) = \frac{4}{4 + \omega^2}$ Find CO3- App the autocorrelation.
- 14. Determine the power spectrum of white noise process CO4- App
- 15. If $S_1^2 = 8.833$ and $S_2^2 = 4.178$ then compute the value of F- ratio CO5- Ana

 $PART - C (5 \times 16 = 80 \text{ Marks})$

16. (a) (i) Define Poisson distribution. Find the moment generating CO1- App (8) function and Hence find mean and variance.

(ii) In a large consignment of electric bulbs 10 % are defective. A CO1- App (8) random sample 20 bulbs are taken for inspection. Find the probability that (i) all are good bulbs (ii) exactly three defective bulbs

2

(b) A Random Variable X has the following probability CO1- App (16) distribution

X=x	0	1	2	3	4	5	6	7
P(X=x)	0	а	2a	2a	3a	a^2	$2a^2$	$7a^2+a$
Find i) 'a'								
ii) $P(X < 6), P(X \ge 6) \& P(1.5 < X < 6.5 / X > 5)$								
iii) If $P(X \le a) > \frac{1}{2}$, Find the minimum value of 'a' iv) Distribution function of x								

17. (a) If joint probability distribution function X and Y is given by CO2- Ana (16)
P(x, y) = k (2x + 3y), for x = 0, 1, 2 & y= 1, 2,3 then find all marginal and conditional probability distribution function of X and Y. & also find P(X+Y).

Or

(b) If the joint Probability density function of X and Y is given by CO2- Ana (16) $f(x,y) = \frac{1}{8}(6-x-y), \quad 0 < x < 2, 2 < y < 4$ Find (a) $P(X < 1 \cap Y < 3)$ (b) P(X < 1/Y < 3) (c) P(X + Y < 3)

18. (a) (i) If the auto correlation function of the random binary CO3-App (8) transmission is given by $R_{XX}(\tau) = \begin{cases} 1 - \frac{|\tau|}{T} & ; |\tau| \le T \\ 0 & ; |\tau| \ge T \end{cases}$ Find the Power

spectral density function.

- (ii) A stationary process has an autocorrelation function given by CO3-App (8) $R(\tau) = 25 + \frac{4}{1+6\tau^2}$ Find the Mean and Variance
 - Or
- (b) (i) If the auto correlation function of the random binary CO3- App (8) transmission is given by $R_{XX}(\tau) = \begin{cases} 1 - |\tau| ; |\tau| \le 1 \\ 0 ; else \end{cases}$ compute the Power spectral density function.

(ii) A stationary process has an auto correlation function given by CO3-App (8) $R(\tau) = \frac{25\tau^2 + 36}{6.25\tau^2 + 4}$ compute the mean and variance

19. (a) A random process X (t) having the autocorrelation function CO4- App (16) $R_{xx}(\tau) = Pe^{-\alpha |\tau|}$ Where b is a constant is applied to the input of the system with impulse response h (t) = $e^{-bt}U(t)$ where b is a constant. Find the autocorrelation of the output Y (t).

Or

- (b) If X (t) is a WSS process and if $Y(t) = \int_{-\infty}^{\infty} h(u) X(t - u) du \text{ then}$ $S_{\gamma\gamma}(\omega) = S_{xx}(\omega) * |H(\omega)|^2$ (16)
- 20. (a) Two independent samples of sizes 9 and 7 from a normal CO5- Ana (16) population had the following values of the variables.

Sample I	18	13	12	15	12	14	16	14	15
Sample II	16	19	13	16	18	13	15		

Identify the sampling distribution, Do the estimates of the population variance differ significantly.

Or

(b) (i) The theory predicts the population of beans in the four groups CO5- Ana (8) A, B, C and D should be 9:3:3:1. In an experiment among 1600 beans, the numbers in the four groups were 882, 313, 287 and 118. Does the experimental result support the theory?
(ii) On the basis of information noted below, find out whether the CO5- Ana (8) new treatment is comparatively superior to the conventional one. Identify the sampling distribution.

	Favorable	Non-Favorable	Total
conventional	40	70	110
New	60	30	90
Total	100	100	200