		Reg. No :											
	Question Paper Code: U5M01												
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2024												
	Fifth Semester												
	Artificial Intelligence And Data Science												
	21UMA501-LINEAR ALGEBRA												
	(Regulations 2021)												
Dura	ation: Three hours							l	Maxi	imun	n: 10	0 M	arks
		PART A	- (10 x	1 = 10	0 Mar	ks)							
1.	The Union of two Su only if one is	bspaces of a V	vector S the othe	Space er.	is a S	Subsp	ace	if ar	nd (CO6-	- U		
	(a) Need not Contained	ed (b) Contai	ined	(c)	Depe	nden	t		((d) N	Jone	of tl	iese
2.	Any Vector in the form	$m \alpha_1 v_1 + \alpha_2 v_2 + \dots$	$\ldots + \alpha_1$	_n v _n is	called				(CO6-	- U		
	(a) Linear transformation (b) Linear Combination												
	(c) Linear independent (d) none of these												
3.	If T: $V \rightarrow W$ be linear	transformation	then T((0) =					(CO6-	- U		
	(a) 0	(b) 1		(c) 2	2				((d) 3			
4.	Any linear transform	mation T: V-	→W ca	an be	e rep	resen	ted	by	a (CO6-	- U		
	(a) line	(b) circle		(c) s	quare				((d) m	atrix	Σ.	
5.	$\langle x, x \rangle = 0$ if and only	if							(CO6-	- U		
	(a) $x = 1$	(b) $x \neq 1$		(c) ,	x = 0				((d) <i>x</i>	≠ 0		
6.	In a vector space, $\ \alpha_x\ $	=	_						(CO6-	- U		
	(a) $ \alpha + x $	(b) $ \alpha - x $		(c)	$\alpha \ x \ $				((d) a	x / x		

7.	All	All Eigen values of a operator are real			CO6- U			
	(a) S	Self adjoint	(b) Eigen Vector	(c) Inner Product	(d) None o	f these		
8.	Any matrix can be put in to the factorial form PDQ, where P and Q are Unitary and D is					CO6- U		
9.	(a) Dimension (b) Diagonal (c) Determinant Linear Programming deals with the of a function of decision variable.			(d) None of these CO6- U				
	(a) (Optimization	(b) Formulation	(c) Technique	(d) None o	f these		
10.	Find b_n in the expansion of x^2 as a Fourier series in $(-\pi,\pi)$			CO6- U				
	8	a) π	b) -π	c) 0	(d) None o	f these		
			PART – B (5 ×	x 2= 10Marks)				
11.	. Verify the commutative property for a vector space $R \times R$ over R under CO1-App addition defined by $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$							
12.	State any two properties of linear transformation CO6-U							
13.	If $x = (2, 1+i, i)$ and $y = (2-i, 2, 1+2i)$ then find $\langle x, y \rangle$. CO3-App							
14.	State Cayley – Hamilton theorem CO4-App							
15.	Write down the usage of Linear algebra in Computer Graphics CO6-U							
			PART – C (S	5 x 16= 80Marks)				
16.	(a)	(i) Verify the vec basis of R ³ .	etors (2, 1, 0), (-3, -3,	1), (-2, 1, -1) in R ³ is a	CO1- App	(8)		
		(ii) Prove that R Scalar multiplica and $\alpha(x_1, x_2) = (\alpha$	X R is a Vector Spattion defined by $(x_1, x_1, \alpha x_2)$.	the over under addition and $_2) + (y_1, y_2) = (x_1+y_1, x_2+y_2)$	CO1- App	(8)		
	(b)	(i) Find the dim (2, 0, 1), (-1, 0, 1	hension of the subspace $(1, 0, 2)$ in $V_3(R)$.	ace spanned by the vectors	CO1- App	(8)		
		(ii) Write the ma	atrix $E = \begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix}$ as	a linear combination of the	CO1- App	(8)		

matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \quad , \ \mathbf{B} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \quad \text{and} \ \mathbf{C} = \begin{pmatrix} 0 & 2 \\ 0 & -1 \end{pmatrix}$$

17. (a) (i) If T: $\mathbb{R}^2 \to \mathbb{R}^3$ be linear transformation defined by CO2- App (8) $T(a_1, a_2) = (a_1 + a_2, a_1 - a_2, a_2)$ then find nullity(T),rank(T), Is T one-to-one? Is T onto? Also check the rank nullity theorem.

> (ii) Find the matrix of the linear transformation T: $V_3(R) \rightarrow V_3(R)$ defined by T(a,b,c) = (a,a+b,2a+b+3c) for the standard basis of $V_3(R)$. (8)

> > Or

- (b) Find the Linear transformation $T : R^3 \to R^3$ such that T(1, 1, 1) = CO2- App (16) (1, 1, 1) T(1, 2, 3) = (-1, -2, 3) and T(1, 1, 2) = (2, 2, 4)
- 18. (a) Apply Gram-Schmidt process to construct an orthonormal basis CO3- App (16) for $v_3(R)$ with the standard inner product for the basis $\{v_1, v_2, v_3\}$ where $v_1 = (1,0,1)$, $v_2 = (1,3,1)$ and $v_3 = (3,2,1)$

Or

(b) If x = (2, 1 + i, i) and y = (2 - i, 2, 1 + 2i) then verify Schwarz's CO3- App (16) inequality.

19. (a) Determine the Cholesky Decomposition for A = CO4- App (16) $\begin{pmatrix}
16 & -3 & 5 & -8 \\
-3 & 16 & -5 & -8 \\
5 & -5 & 24 & 0 \\
-8 & -8 & 0 & 21
\end{pmatrix}$

Or

(b) Construct a QR factorization for a matrix $A = \begin{pmatrix} -4 & 2 & 2 \\ 3 & -3 & 3 \\ 6 & 6 & 0 \end{pmatrix}$ CO4- App (16) 20. (a) An economy consists of the coal, electric (Power) and steal CO5- App (16) sectors and the output of each sectors is distributed among the various sectors as listed below

Coal	Electric	Steel	Purchased by
0.0	0.4	0.6	Coal
0.6	0.1	0.2	Electric
0.4	0.5	0.2	Steel

Distribution from output

Denote the prices (in dollar) of the total annual output of the coal, electric and steel sectors by P_C , P_E and P_S respectively. Find the equilibrium prices that makes each sectors income matches in expenditure.

Or

(b) Find the 3x3 matrix that corresponds to the composite CO5- App (16) transformation of a scaling by 0.3, a rotation of 90° about the origin and finally a translation that adds (-0.5, 2) to each point.