						-		
		Reg. No. :						
		Question Paper Code: U5E03						
		B.E./B.Tech. DEGREE EXAMINATION, NOV 2024						
		Fifth Semester						
		Artificial Intelligence & Data Science						
		21UAD503 - MACHINE LEARNING TECHNIQUES						
		(Regulations 2021)						
Dura	ation:	Three hours Ma	xim	um:	100	Mar	ks	
		Answer All Questions						
		PART A - $(10 \text{ x } 2 = 20 \text{ Marks})$						
1.	Ider	tify the advantages of machine learning algorithms.			C	202-	App	
2.	Wha	at are the types of Machine learning techniques?				CO1-U		
3.	Exp	lain Inductive machine learning?			C	201-	U	
4.	Def	Define discrete distributions techniques in machine learning techniques.				CO1-U		
5.	Define Back propagation algorithm.					CO1-U		
6.	Def	ne sigmoid activation function.			C	201-	U	
7.	Illus	strate the real time applications of Unsupervised Learning?	(C	CO2-App		
8.	Wha	at are the Dimensionality reduction techniques?	CO		:01 - U			
9.	Wha	at is meant by RNN?	CO1-U			U		
10.	Wha	at are the key components of HMM?			C	CO1-1	U	
		PART – B (5 x 16= 80 Marks)						
11.	(a)	Short note on	C	CO1-	U	((16)	
		a) Bias and variance (8) b) Bias and variance trade off (8)						
		Or						
	(b)	Explain in detail about the performance metrics for evaluation of	f C	CO1-	U	((16)	

machine learning models.

12.	(a)	Apply the Discrete Distribution techniques with real time examples	CO2-App	(16)							
	Or										
	(b)	Apply the Monte Carlo Approximation with real time machine learning applications.	CO2-App	(16)							
13.	(a)	Determine activation function and list few activation function with description.	CO1-U	(16)							
		Or									
	(b)	Discuss the steps involved in Back propagation algorithm.	CO1 U	(16)							
14.	(a)	How dimensionality reduction is important in NN? Justify. Or	CO1 U	(16)							
	(b)	Explain in detail about K-Means Clustering Algorithm with suitable examples.	CO1 U	(16)							
15.	(a)	Explain in detail about RNN and its types with real time applications.	CO1 U	(16)							
Or											
	(b)	Explain the functionality of LSTM and its types with suitable examples.	CO1 U	(16)							