	Reg. No :						
	Question Paper Code: U5E02						
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2	2024					
	Fifth Semester						
	Artificial Intelligence and Data Science						
	21UAD502- FORMAL LANGUAGES AND COMPUTATION						
	(Regulations 2021)						
	PART A - $(10 \text{ x } 2 = 20 \text{ Marks})$						
1.	Summarize minimization of DFA				CO	1 - U	
2.	Find DFA over $\sum = (a,b)$ which produces not more than 3a's.				CO	2-A	pp
3.	State pumping lemmaandits advantages.				CO	1 - U	
4.	Name the four closure properties of RE.				CO	1-U	
5.	Find CFG for the language L= $\{0^{i}1j2^{k} i=j\}$				CO	2-A	pp
6.	Find PDA to accept the strings of the language, $L = \{a^n c^m b^n n, m \ge 0\}$				CO2-App		
7.	Define the language recognized by any Turing Machine				CO1-U		
8.	Eliminate thee productions from the CFG given below				CO	2-A	рр
	$A \rightarrow 0B1 1B1$ $B \rightarrow 0B 1B \varepsilon$						
9.	Describe an example of undecidable problem				CO	1 - U	
10.	What is meant by halting problem				CO	1-U	

PART –	B (5 x	16=	80	Mark	s)
--------	------------	-----	-----	----	------	----

11. (a) (i) Construct the following NFA to DFA.

States	a	b
Р	{ p }	{p, q}
q	{ r }	{ r }
r*	ф	ф

(ii) Construct a DFA accepting binary strings such that the third symbol from the right end is 1.

CO2-App (16)

(ii) Construct a NFA to accepting the set of strings over {a,b} ending in aba. Use it construct a DFA accepting the same set of strings.

12.(a)	Construct NDFA forgiven R Eusing Thomson rule. i) a.(a+b)*ab ii) (a.b)* iii)(a+b)	CO2-App	(16)		
(b)	(i) Find the regular expression for finite automate	CO2 Ann	(16)		
(0)	(1) Find the regular expression for finite automata	CO2-App	(10)		
	$\rightarrow q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_3$				
	(ii) Construct a finite automata for the regular				
	expression 10+(0+11)0*1				
13. (a)	Solve the following grammar	CO2-App	(16)		
	S→aAa bBb BB				
	A→CB→S A				
	$C \rightarrow S \varepsilon$ for the string abaaba. Find				
	(i) Left most derivation				
	(ii) Right most derivation				
	(iii) Derivation Tree				
	(iv) For the string abaabbba, find the right most derivation.				
	Or				

(b)	Consider the following grammar for productions:	CO2-App	(16)
	$S \rightarrow a ^{(T)}T \rightarrow T, S S$.Find the left most derivation and right most		
	derivation and parsetree for		
	((((a,a),(^,a)),a)		
14. (a)	(i) Explain two types of normal form and gives an example.	CO1- U	(16)
	(ii) Explain the null productions, Unit production and Useless symbols		
	in production with example.		
	Or		
(b)	Define and prove the any four closure properties of context free languages	CO1- U	(16)
15. (a)	Describe about the tract able and intractable problem swith an examples.	CO1-U	(16)
	Or		
(1)	(i) Define PCP and prove that PCP is undecidable.	CO1-U	(16)
(b)	(ii) Explain that"MPCP reduce to PCP".		. /

U5E02