Reg. No:						

Question Paper Code: R3M26

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

Third Semester

Bio technology

R21UMA326-TRANSFORM TECHNIQUES AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to BME and AGRI) (Regulations R2021)

Duration: Three hours Maximum: 100 Marks PART A - $(10 \times 1 = 10 \text{ Marks})$ If a function f(x) is even, its Fourier expansion contains only ---- CO6-U 1. terms. (a) Sine (b) Cosine (d) None of these (c) tan 2. The Fourier constant b_n in $(-\pi,\pi)$ for $x \sin x$ is _____. CO1-App (a) x^2 (b)3x(c)0(d) 1 CO2-App 3.

$$3. \qquad F_{S}\left[x \ f(x)\right] = \underline{\hspace{1cm}}$$

(a)
$$-F_c[f(x)]$$
 (b) $-\frac{d}{ds} \{F_s[f(x)]\}$ (c) $-F_s[f(x)]$ (d) $-\frac{d}{ds} \{F_c[f(x)]\}$
4. If $F[f(x)] = f(s)$ then $F[f(ax)] =$ CO2-App

CO2-App

(a)
$$\frac{1}{-a}F\left(\frac{s}{a}\right)$$
 (b) $\frac{1}{a}F\left(\frac{s}{a}\right)$ (c) $\frac{1}{|a|}F\left(\frac{s}{a}\right)$

(a)
$$\frac{z}{z+1}$$
 (b) $\frac{z}{z-1}$ (c) $\frac{z^2}{z+1}$

6.
$$Z^{-1} \left\lceil \frac{z}{(z-1)^2} \right\rceil =$$
 CO3- App

(a)
$$n^2$$
 (b) n^3 (c) n (d) none of these

7. The PDE obtained from z = (x+a)(y+b) is . CO4-App

(a) 3z = px + qy

(b) py - qx = 0

(c) z = pq

(d) px+qy=0

The complete solution of z = px + qy + pq is____. 8.

CO4-App

(a) z = ax + by + ab

(b) z = ax-by-ab (c) z=ax+by-ab

(d) z = ax-by+ab

Classify the equation $u_{xx}+u_{yy}=0$ 9.

CO6-U

(a) parabolic

(b) hyperbolic

(c) elliptic

(d) cyclic

In one dimensional heat equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$, α^2 is the _____ of the CO6-U 10. substance.

(a) diffusivity

(b) specific heat

(c) thermal conductivity (d) density

PART - B (5 x 2= 10Marks)

11. Find the root mean square value of the function f(x) = x in (0,1)

CO1-App

12. Find the Fourier transform of $f(x) = \begin{cases} 1 & |x| < 2 \\ 0 & |x| > 2 \end{cases}$ CO2-App

13. Evaluate $z(3^n)$ CO3-App

14. Form the PDE by eliminating arbitrary constants from $z = (x + a)^2 + (y + b)^2$ CO4-App

CO5-App

15. The ends A and B of a rod of length 10cm long have their temperature kept at 20°c & 70°c. Find the steady state temperature distribution on the rod.

(a) (i) Calculate the Fourier series expansion for $f(x) = (\pi - x)^2$ in $(-\pi, \pi)$ CO1-App (8) 16.

(ii) Express the Fourier Series of $f(x) = x^2$ in $(0,2\pi)$

CO1-App (8)

The table of values of the function y = f(x) is given below: (b)

CO1-App (16)

x 0 T/6 T/3 T/2 2T/3 5T/6 T y: 1.9 1.30 1.05 1.30 -0.88 -0.25 1.98										
y: 1.9 1.30 1.05 1.30 -0.88 -0.25 1.98	X	0 T/6		T/3	T/2	2T/3	5T/6	T		
	y:	1.9	1.30	1.05	1.30	-0.88	-0.25	1.98		

Find a Fourier series up to the third harmonic to represent f(x) in terms of x

17. (a) Find the Fourier transform of
$$f(x) =\begin{cases} a - |x|, & \text{if } |x| \le a \\ 0 & \text{if } |x| > a \end{cases}$$
 and hence CO2-App (16)

deduce that
$$i$$
) $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt = \frac{\pi}{2} ii$) $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt = \frac{\pi}{3}$

(b) (i) Evaluate
$$\int_{0}^{\infty} \frac{x^{2} dx}{(x^{2} + 16)(x^{2} + 9)}$$
 CO2-App (8)

(ii) Find the Fourier Cosine Transform of
$$\frac{e^{-ax} - e^{-bx}}{x}$$
 CO2-App (8)

18. (a) (i) Evaluate
$$Z[\cos n\theta]$$
 and $Z[\sin n\theta]$ CO3-App (8)

(ii) Evaluate
$$z^{-1} \left[\frac{z}{z^2 + 7z + 10} \right]$$
 using partial fraction method. CO3-App (8)

Or

(b) (i) Using convolution theorem find
$$z^{-1} \left(\frac{8z^2}{(2z-1)(4z-1)} \right)$$
 CO3-App (8)

(ii) Solve
$$y_n + 3y_{n-1} - 4y_{n-2} = 0$$
 given $y(0) = 3$, $y(1) = -2$ CO3-App (8)

19. (a) (i) Solve
$$\left(D^2 - 4DD' + 4D'^2\right)z = e^{2x+y} + xy$$
 CO4-App (8)

(ii) Form a P.D.E by eliminating
$$f$$
 from $z = x y + f(x^2 + y^2 + z^2)$ CO4-App (8)

Or

(b) (i) Solve
$$(mz - ny) p + (nx - lz) q = ly - mx$$
 CO4-App (8)

(ii) Solve
$$z = px + qy + p^2 q^2$$
 CO4-App (8)

20. (a) A String is stretched and fastened to two points 1 apart .Motion is CO5-App (16) started by displacing the string into the form
$$y=\lambda x(1-x)$$
 from which it is released at t=0.Find the displacement of any point at a distance 'x' at any time 't'.

Or

(b) A rod 30cm long has its ends A and B kept at 20° c and 80° c CO5-App (16) respectively until steady state conditions prevails. The Temperature at each end is then suddenly reduced to 0° c and kept so . Find the resulting temperature for function u(x,t) taking x=0 at A.