	 1	1	1	1	1	1		
Reg. No:								

Question Paper Code:U3M26

B.E./B.Tech. DEGREE EXAMINATION, NOV 2024

		Third S	Semester		
		Agriculture	e Engineering		
	21UMA326-TRANS	FORM TECHNIQUES A	AND PARTIAL DIFFERI	ENTIAL EQUAT	ΓIONS
	(Con	nmon to Biomedical an	d Biotechnology Engine	eering)	
		(Regulat	tions2021)		
Dur	ation: Three hours		Maxim	um: 100 Marks	
		Answer A	ll Questions		
		PART A - (10	0x 1 = 10Marks)		
1.	The term $(a_1 \cos x +$	b ₁ sinx) in fourier serie	es is called		CO6-U
	(a) First harmonic	(b) Second harmonic	(c) Third harmonic	(d) Fourier Co	efficients
2.	Cos x is a periodic	function with period			CO6- U
	(a) π	(b) 2 π	(c) π/3	(d) $2 \pi/3$	
3.	If $F[f(x)] = f(s)$	then the function is said	l to be		CO6- U
	(a) Odd	(b) Even	(c) Self-Reciprocal	(d) Periodi	c
4.	If $F[f(x)] = f(s)$	thenF[$f(ax)$] =			CO2- App
	(a) $\frac{1}{-a}F\left(\frac{s}{a}\right)$	(b) $\frac{1}{a}F\left(\frac{s}{a}\right)$	(c) $\frac{1}{ \mathbf{a} } \mathbf{F} \left(\frac{\mathbf{s}}{\mathbf{a}} \right)$	(d) $\frac{1}{s}F\left(\frac{s}{a}\right)$	
5.	If $Z\{f(t)\} = F(Z)$, th	$\operatorname{den} Z\{e^{-at}f(t)\} = \underline{\hspace{1cm}}$			CO6- U
		(b) F [Ze ^{aT}]		(d) F [e ⁻	^{aT}]
6.	Z [n f(n)] =				CO6- U
	(a) $-z \frac{d}{dz} F(Z)$	(b) $z \frac{d}{dz} F(Z)$	(c) $\frac{d}{dz}F(Z)$	(d) $z^n \frac{d}{dz} F(z)$	Z)
7.	The PDE obtained f	from $z = (x+a)(y+b)$ is	·		CO4- App
	(a) $3z = px + qy$	(b) py - $qx = 0$	(c) $z = pq$	(d) px+qy	= 0

8. The particular integral of
$$(D^2 - 4DD' + 3D'^2)$$
 $z = e^{x+y}$ is _____

CO₄- App

(a)
$$\frac{xe^{x+y}}{2}$$

(b)
$$-\frac{xe^{x+y}}{2}$$

(iii)
$$\frac{x^2e^{x+y}}{2}$$

(b)
$$-\frac{xe^{x+y}}{2}$$
 (iii) $\frac{x^2e^{x+y}}{2}$ (iv) $\frac{-x^2e^{x+y}}{2}$

Classify the equation y2uxx+uyy = 0 is _____

CO6- U

- (a) parabolic
- (b) hyperbolic
- (c) elliptic
- (d) cyclic

An insulated rod of length 60 cm has its ends at A and B kept at 20oC and CO5- App 80oC respectively, then its steady state solution is

(a)
$$x-20$$

(b)
$$4x+20$$

(c)
$$x+20$$

(d)
$$x+60$$

PART - B (5 x 2= 10Marks)

11. Find
$$a_0$$
 and a_n in the Fourier series of $f(x) = x + x^3$ in $(-\pi,\pi)$

CO1- App

12. Find the Fourier cosine transform of
$$f(x) = \frac{1}{1+x^2}$$

CO2- App

13. Find
$$Z\left[\sin(\frac{n\pi}{2})\right]$$

CO₃- App

14. Solve:
$$(D^2 - 4DD' + 4D^2)Z = \sin(x + y)$$
.

CO4- App

15. Write the three Possible solutions of the one dimensional wave equations

CO5-U

16. (a) (i) Find the Fourier series of
$$f(x) = \begin{cases} -1+x, & -\pi < x < 0 \\ 1+x, & 0 < x < \pi \end{cases}$$
 of

CO1 -App (8)

periodicity 2π .

(ii) Find the Half range cosine series for $f(x) = x(\pi - x)$ in $(0, \pi)$.

CO1 -App (8)

Deduce that
$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} = \frac{\pi^4}{90}$$

The table of values of the function y = f(x) is given below:

CO1 -App (16)

X	0	$\pi/3$	$^{2\pi}/_{3}$	π	$4\pi/_3$	$5\pi/_3$	2π
y	1.	1.4	1.9	1.	1.5	1.2	1.
:	0			7			0

Find a Fourier series upto the third harmonic for f(x) in terms of х.

17. (a) Find the Fourier transform of
$$\mathbf{f}(\mathbf{x}) = \begin{cases} \mathbf{a} - |\mathbf{x}|, & \text{if } |\mathbf{x}| \le a \\ \mathbf{0} & \text{if } |\mathbf{x}| > a \end{cases}$$
 and hence deduce that $(i) \int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{2} dt$ (ii) $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^{4} dt$

(b) Evaluate (i)
$$\int_{0}^{\infty} \frac{x^2 dx}{\left(x^2 + a^2\right) \left(x^2 + b^2\right)}$$
 (ii) Evaluate
$$\int_{0}^{\infty} \frac{dx}{\left(x^2 + 49\right)^2}$$
 CO2 -App (16)

18. (a) (i) Solve the difference equation
$$y_{n+2} + 6y_{n+1} + 9y_n = 2^n$$
 CO3- App (8) given that $y_0 = 0$, $y_1 = 0$

(ii) Using Convolution theorem find
$$Z^{-1} \left[\frac{8z^2}{(4z-3)(2z+1)} \right]$$
 CO3- App (8)

Or

(b) (i) Solve the difference equation
$$y_{n+2} + 4y_{n+1} + 3y_n = 2^n$$
 CO3-App (8) given that $y_0 = 0$, $y_1 = 0$

(ii) Evaluate
$$Z[r^n \cos n\theta]$$
 and $Z[r^n \sin n\theta]$. CO3- App (8)

19. (a) (i) Solve
$$x(z^2 - y^2)p + y(x^2 - z^2)q = z(y^2 - x^2)$$
 CO4-App (8)

(ii) Solve $(D^2 - DD' - 2D^2)z = 2x + 3y + e^{3x+4y}$

(ii) Solve
$$(D^2 - DD' - 2D^2)z = 2x + 3y + e^{3x+4y}$$
 CO4-App (8)

(b) (i) Solve
$$x(y-z)p + y(z-x)q = z(x-y)$$
 CO4-App (8)
(ii) Solve $(D^2 - 7DD' + 6D^{2})z = e^{2x+y}$ CO4-App (8)

(b) A tightly String with fixed end points x=0 and x=1 is initially at CO5- App (16)rest in its equilibrium position. If its set vibrating giving each point at velocity $\lambda(1x-x^2)$. Find the displacement.