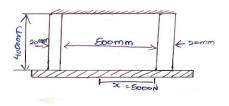
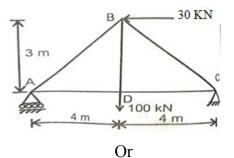

Reg. No. :	
------------	--


		Question Pa	per Code:U5A03	
		B.E./B.Tech. DEGREE E	XAMINATION, NOV 20)24
		Fifth	Semester	
		Agricultura	ll Engineering	
	21UAG503 - 3	STRENGTH OF MATERL	ALS FOR AGRICULTU	RAL ENGINEERS
		(Regula	tions 2021)	
Dur	uration: Three hours		Maxin	mum: 100 Marks
		Answer A	All Questions	
		PART A - (10	x 1 = 10 Marks)	
1.	The ratio of ch	ange in length to original le	ength is called	CO1- U
	(a) Strees	(b) modulus of elasticity	(c) factor of safety	(d) strain
2.	Volumetric stra	ain is defined as		CO1- U
	(a) dV/V	(b) dL/L	(c) db/b	(d) dd/d
3.	A frame in whi	ich all members lie in the si	ngle plane is caled	CO1- U
	(a) Plain frame	(b) Space frame	(c) deficient frame	(d) redudant frame
4.	Which equation is used to find out the perfect frame CO1-			
	(a) m= 2j+3	(b) $m=2j-2$	(c) m= $2j-3$	(d) $m=2j+2$
5.	SI units of shea	ar force is	_	CO1- U
	(a) kN/m	(b) kN-m	(c) kN	(d) m/N
6.	The beam havi	ng one end free and one end	d fixed is called as	CO1- U
	(a) Cantilever	beam	(b) Continuous beam	
	(c) Overhang beam (d) Simply supported		l beam	
7.	The units of to	rsional rigidity is		CO1- U
	(a) Nmm ²	(b) N/mm	(c) N-mm	(d) N
8.	The power tran	smitted by shaft SI system	is given by	CO1- U
	(a) 2πNT/60	(b) 3πNT/60	(c) $2\pi NT/45$	(d) NT/60 W
9.	The point at which the deviation of centre is called			CO1- U
	(a) Eccentricity	(b) centre	(c) straight	(d) inclined

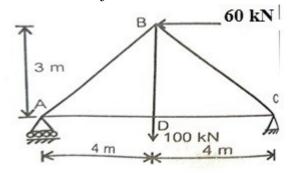
- The radius of curvature of the deflected beam is 10.
 - $=\frac{E}{R}$ (a) $\frac{M}{I} =$
- 11. State thermal stress CO1- U 12. State tension coefficient and what is the unit of it? CO1- U 13. Which place the maximum bending will occur in the beam? CO1- U 14. Explain in detail about polar moment of inertia CO1- U 15. Give the deflection equation of simply supported beam with point load at centre CO1- U

16. (a) A bar shown in fig. is subjected to a tensile load of 160 kN. If the CO2- App (16) stress in the middle portion is subjected to 150 N/ mm². Determine (i) diameter of the middle portion also find the (ii) length of the middle portion, if the total elongation of the bar is to be 0.2 mm. Take
$$E= 2 \times 10^5 N/mm^2$$

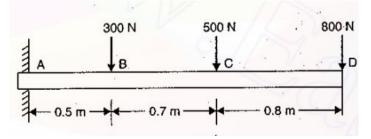
Two vertical rods one of steel and the other of copper are each CO2- App (b) (16)rigidly fixed at the top and 50 cm apart. Diameters and lengths of each rod are 2 cm and 4 m respectively. A cross bar fixed to the rods at the lower end carries a load of 5000 N such that the cross bars remains horizontal even after loading. Find the stress in each rod and position of the load on the bar. Take $E= 2 \times 10^5$ N/mm2 for steel and take $E= 1 \times 10^5 \text{ N/mm}^2$ for copper



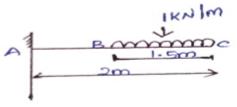
Determine the forces in all the members of the truss shown in fig. 17. CO₂- App (a) (16)by using the method of joints.


2

PART – C (5 x 16= 80 Marks)


$$\frac{E}{R}$$
 (b) $\frac{M}{J} = \frac{E}{R}$ (c) $\frac{N}{I} = \frac{E}{R}$ (d) $\frac{M}{C}$
PART – B (5 x 2= 10 Marks)

(b) Determine the forces in all the members of the truss shown in fig. CO2- App (16) by using the method of joints.



18. (a) Cantilever beam of length 2 m carries the point loads as shown in CO2- App (16) fig. Draw the shear force and BM diagrams for the cantilever beam.

Or

(b) A cantilever beam of length 2 m carries a uniformly distributed CO2- App (16) load of 1 kN/m run over the entire length of 1.5 m from the free end draw the shear force and bending moment diagrams for the cantilever.

19. (a) Derive the equation for torque developed by the hollow circular CO2- App (16) shaft and give the assumptions.

- (b) Determine the diameter of the solid shaft which will transmits 90 CO2- App (16) kW at 300 rpm also determine the length of the shaft if the twist must not to exceed 1° over the entire length. The maximum shear stress is limited to 60 N/mm2. Take the value of modulus of rigidity is 8 × 10⁴ N/mm2
- 20. (a) Derive the equation of deflection for a simply supported beam CO2- App (16) with point load at midpoint.

Or

(b) Determine (i) slope at the left support (ii) deflection under the CO2- App (16) load and (iii) maximum deflection of a simply supported beam of the length 5 m, which is carrying a point load of 5 kN at a distance of 3 m from the left end. Take E for the material of the beam= 2.1×10^5 N/mm² and I= 1×10^8 mm⁴