A
\Box

Reg. No.:						

Question Paper Code: U3024

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Third Semester

Electrical and Electronics Engineering

21UMA324- PROBABILITY, STATISTICS, COMPLEX ANALYSIS AND NUMERICAL METHODS

(Regulations 2021)

		, —			
Dur	ration: Three hours			Maximum: 100) Marks
		Answer Al	1 Questions		
		PART A - (10	x 1 = 10 Mark	cs)	
1.	Large sample size is				CO6-U
	(a) 30	(b) >30	(c) < 30	(d) none of the above	
2.	The degrees of freedo	m for the sample size	n= 25 in t tes	t is	CO6- U
	(a) 20	(b) 22	(c) 24	(d) 26	
3.	If A and B are indepe	endent events then P(A	$A \cap B) =$		CO6- U
	(a) 0	(b)P (A). P(B)	(c) P (A).	P(B) (d) $P(A) - F$	P (B)
4.	The r th moment about	origin is			CO6- U
	(a) $\mu(X)$	(b) $\mu(X^2)$	$(c)\mu(X^r)$	(d) None of the abo	ove
5.	When Gauss Jordan matrix.	method is used to s	solve AX=B,	A is transferred in a	CO6- U
	(a) diagonal	(b) identity	(c) square	(d) zero	
6.	Newton's method also	o called m	nethod		CO6- U
	(a) tangents	(b) slope	(c) secant	s (d) false	
7.	In Euler's method, if	h is small, the method	l is too		CO6- U
	(a) fast	(b) slow	(c) averag	ge (d) None of	these

8.	prior valu	es are required to pred	dict the next value in M	ilne's method	CO6- U
	(a) 1	(b) 2	(c) 3	(d) 0	
9.	Simple pole is a	pole of order	_		CO6- U
	(a) 1	(b) 2	(c) 3	(d) 4	
10.	Find the order of	pole z=0 of the follow	wing functions $f(z) = \frac{e}{z}$	z	CO6- U
	(a) 0	(b) 3	(c) 2	(d) 1	
		PART – I	B (5 x 2= 10Marks)		
11.	5 1	3:2. In an experime	beans in the four group nt among 1200 beans		CO1- App
12.		andard deviation of the	ne binomial distribution e parameter 'n'.	20 and 4	CO2- App

13. State the principle used in Gauss Elimination Method.

CO6- U

14. Write down the fourth order RungeKutta algorithm

CO6- U

15. Expand log(1+z) as a Taylor's series.

CO5 App

$$PART - C$$
 (5 x 16= 80Marks)

16. (a) Two researchers A and B adopted different techniques while CO1-Ana (16) rating the student's level. Identify the Sampling distribution; Can you say that the techniques adopted by them are significant?

•			•		_
Researchers	Below	Average	Above	Genius	Total
	Average		Average		
A	40	33	25	2	100
В	86	60	44	10	200
Total	126	93	69	12	300

Or

(b) Two independent samples of sizes 9 and 7 from a normal CO1-Ana (16) population had the following values of the variables.

			•	_					
Sample	18	13	12	15	12	14	16	14	15
I									
Sample	16	19	13	16	18	13	15		
II									

Identify the sampling distribution, Do the estimates of the population variance differ significantly.

17. (a) A Random Variable X has the following probability distribution CO2 -App (16)

X=X	0	1	2	3	4	5	6	7
P(X=x)	0	K	2 K	2 K	3 K	K ²	$2 K^2$	$7 \text{ K}^2 + \text{ K}$

Find (i) 'K'

- (ii) P(X < 6), $P(X \ge 6)$ & P(1.5 < X < 6.5 / X > 5)
- (iii) If $P(X \le x) > \frac{1}{2}$, Find the minimum value of 'x'
- (iv) Distribution function of x. (V) E(X)

Or

(b) (i) A Random Variable X has the following probability CO2 -App distribution (8)

X=x	0	1	2	3	4	5	6	7	8
P(X=x)	a	3a	5a	7a	9a	11a	13a	15a	17a

Using the probability mass function, calculate the following

- (i) 'a'
- (ii) $P(X \le 3)$, $P(X \ge 3)$
- (iii) (0 < X < 5)
- (iv) distribution function.
- (ii) State and Prove the memory less property for an Exponential CO2 -App distribution. (8)
- 18. (a) (i) Solve the equation $e^x 3x = 0$ by iteration method

- CO3- App (8)
- (ii) Solve 27x + 6y z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110 CO3- App by Gauss Jacobi Method. (8)

Or

(b) Using Power method find numerically largest Eigen value of

CO3- App

(8)

 $\begin{pmatrix}
5 & 0 & 1 \\
0 & -2 & 0 \\
1 & 0 & 5
\end{pmatrix}$

(ii) Solve 27x + 6y - z = 85, 6x + 15y + 2z = 72, x + y + 54z = 110 CO3- App by Gauss Seidel method. (8)

19. (a) Using R-K method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with CO4-App (16) $\mathbf{y}(\mathbf{0}) = \mathbf{1}$ at x = 0.2, x = 0.4

Or

- (b) Using Adam's Bash forth Predictor-Corrector method, find y(4.4) CO4-App given that $5xy' + y^2 = 2$, y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097 and y(4.3) = 1.0143
- 20. (a) Evaluate: $\int_{-\infty}^{\infty} \frac{x^2}{(x^2+4)(x^2+9)} dx$, using contour integration. CO5- App (16)
 - (b) (i) Evaluate using Cauchy's Integral formula for $f(z) = \int_{C} \frac{2z-1}{z(z+1)(z-3)} dz$, where 'C': |z| = 2. (8)
 - (ii) Find the Laurent's series of $f(z) = \frac{7z 2}{z(z+1)(z-2)}$ valid in CO5-App (8) the region 1 < |z+1| < 3