Reg. No. :						
0						

CO2- App

(16)

Question Paper Code: U3B06

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Third Semester

Biomedical Engineering

21UBM306- DIGITAL LOGIC CIRCUITS

(Regulations 2021)

Duration: Three hours Maximum: 100 Marks

Perform the following code conversions: $(AB2)_{16} \rightarrow (?)_2 \rightarrow (?)_8 \rightarrow (?)_{10}$.

Answer All Questions

PART A - (10x 2 = 20 Marks)

2.	Determine the following: $(27)_8+(74)_8=(?)_8$	CO2- App			
3.	Implement the half adder using OR gate.				
4.	Implement the AND gate using 2:1 multiplexer.				
5.	5. State the purpose of sequence generator in digital circuits				
6.	Differentiate RS flip flop and JK flip flop.				
7.	Classify static 1 and static 0 hazards.				
8.	Distinguish between mealy and moore machines.	CO1- U			
9.	Differentiate static and dynamic RAM.	CO1- U			
10.	Compare semiconductor memories and memories that use magnetic materials.	CO1- U			
	PART - B (5 x 16= 80Marks)				
11.	(a) Find a minimal sum-of-products for the Boolean expression CO2 $f(w,x,y,z) = \sum m(1,2,3,7,8,9,10,11,14,15)$ using tabulation method.	2-App (16)			

Or

 $y=\pi$ (0,1,4,5,6,8,9,12,13,14) using CO2-App

(b) Simplify the expression

Karnaugh map method

12. (a) Design a 4-bit parallel adder/subtractor and explain the operation CO2-App (16)with a logic diagram. Or (b) Implement the Boolean function using 8:1 multiplexer CO2-App (16) $f(A, B, C, D) = \sum m(1,3,4,11,12,13,14,15).$ 13. Design SR, JK, D and T flip flops CO2-App (16)Design shift registers using flip flops. CO2-App (16)Analyze fundamental mode with pulse mode circuits and justify it 14. (a) CO3-Ana (16)Or (b) Design a serial binary adder using D flip flops and T flip flop for the CO3-Ana (16)numbers 1011 and 0110 and also justify your answer. Design a Binary-to-Gray converter similar to basic ROM Structure 15. (a) CO2- App (16)Or (b) Design a combinational circuit using a ROM. The circuit accepts a CO2- App (16)three bit number and outputs a binary number equal to the square of the input number.