Dog	No		
Reg.	110.	•	

Question Paper Code: 55704

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022

Fifth Semester Mechanical Engineering 15UME504 - OPERATIONS RESEARCH (Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

PART A - (10 x 1 = 10 Marks)

Answer ALL Questions

1.	Linear programming problem involving only	two variable can be solved by	CO1- R
	(a) Big M method	(b) Simplex method	
	(c) Graphical method	(d) None of the these	
2.	The linear function of the variables which is	to be maximize or minimize is o	called CO1- R
	(a) Constraints (b) Objective function	on (c) Decision variable	(d) None of them
3.	MODI method is also called as		CO2- R
	(a) North west comer rule	(b) Least cost method	
	(c) U-V method	(d) Stepping stone method	
4.	Johnson's algorithm is used to find for	problem.	CO2- R
	(a) Transportation (b) Travelling salesn	nan (c) Sequencing	(d) Assignment
5.	The critical path of a network is the		CO3- R
	(a) Path with the fewest activities	(b) Shortest time path throug	h the network
	(c) Longest time path through the network	(d) Path with the most activit	ties

6.	In a CPM / PERT netw	vork a dummy activity is n	ecessary when	CO3- R
	(a) Two activities hav	e the same starting node		
	(b) Two activities hav	e the same ending node		
	(c) A node does not ad	ctually connect to another	nod	
	(d) When two activities	es share the same starting a	nd ending node	
7.	One of the important b	asic objective of inventory	management is	CO4- R
	(a) To calculate EOQ	for all materials in the org	anization	
	(b) To go in person to	the market and purchase t	he materials	
	(c) To employ the ava	ilable capital efficiently so	as to yield maximum result	S
	(d) Once materials are	e issued to the departments	, personally check how they	are used
8.	Group replacement po	licy is most suitable for		CO4- R
	(a) Trucks	(b) Infant machines	(c) Street light bulbs	(d) New cars
9.	A mixed strategy game	e can be solved by		CO5- R
	A mixed strategy game	e can be solved by		C03- K
	(a) Algebraic method		(b) Matrix method	C03- K
			(b) Matrix method(d) All of the above	005- K
10.	(a) Algebraic method(c) Graphical Number		(d) All of the above	CO5- R
	(a) Algebraic method(c) Graphical Number	of players	(d) All of the above	
	(a) Algebraic method(c) Graphical NumberThis department is resp	of players	(d) All of the above ent of queuing theory	
	(a) Algebraic method(c) Graphical NumberThis department is resp(a) Railway station	of players	(d) All of the above(d) All of the above(ent of queuing theory(b) Municipal office(d) Health department	
	(a) Algebraic method(c) Graphical NumberThis department is resp(a) Railway station	of players ponsible for the development PART – B (5 x 2	(d) All of the above(d) All of the above(ent of queuing theory(b) Municipal office(d) Health department	
10.	 (a) Algebraic method (c) Graphical Number This department is resp (a) Railway station (c) Telephone department 	of players ponsible for the development PART – B (5 x 2 L.P.P.	(d) All of the above(d) All of the above(ent of queuing theory(b) Municipal office(d) Health department	CO5- R
10.	 (a) Algebraic method (c) Graphical Number This department is resp (a) Railway station (c) Telephone department What do you mean by Define the problem of 	of players ponsible for the development PART – B (5 x 2 L.P.P.	 (d) All of the above (d) All of the above (e) municipal office (d) Health department = 10 Marks) 	CO5- R CO1-U
 10. 11. 12. 	 (a) Algebraic method (c) Graphical Number This department is resp (a) Railway station (c) Telephone department What do you mean by Define the problem of 	of players ponsible for the development PART – B (5 x 2 L.P.P. sequencing. ons of PERT / CPM techni	 (d) All of the above (d) All of the above (e) municipal office (d) Health department = 10 Marks) 	CO5- R CO1-U CO2-U

16. (a) Using graphical method, solve the following L.P.P. CO1- App (16) Maximize $Z = 2x_1 + 3x_2$ Subject to $x_1 - x_2 \le 2$ $x_1 + x_2 \ge 4$ and $x_1, x_2 \ge 0$. Or

 $PART - C (5 \times 16 = 80 \text{ Marks})$

(b) Use Big – M method to solve Minimize $Z = 4x_1 + 3x_2$ Subject to $2x_1 + x_2 \ge 10$ $-3x_1 + 2x_2 \le 6$ $x_1 + x_2 \ge 6$ and $x_1, x_2 \ge 0$.

17. (a) Solve the transportation problem

Job

Supply 2 3 4 6 1 4 3 2 0 8 2 0 2 1 10 8 Demand 4 6 6

То

Or

(b) A batch of 4 jobs can be assigned to 5 different machines. The set up CO2- App (16) time (in hours) for each job on various machines is given below.

Machine				
1	2	3	4	5
10	11	4	2	8
7	11	10	14	12
5	6	9	12	14
13	15	11	10	7

Find an optimal assignment of jobs to machines which will minimize the total set up time.

- 18. (a) Consider the details of a distance network as shown in below(b) (c) CO3 Ana(c) CO3 Ana<
 - (ii) Determine the maximal flow from node 0 to 5

CO1- App

CO2- App

(16)

(16)

AVC (i-j)	Flow			
	fij	fji		
0-1	11	-		
0-2	12	-		
1-3	12	-		
2-1	1	-		
2-4	11	-		
3-4	7	-		
3-5 4-5	19	-		
4-5	4	-		
Or				

(b) A project has the following time schedule.

Activity	Time in month	Activity	Time in month
1-2	2	3 – 7	5
1-3	2	4 - 6	3
1-4	1	5 - 8	1
2-5	4	6-9	5
3-6	8	7 - 8	4
		8-9	3

(16)

CO3- Ana

Construct PERT network and compute

(i) Total float for each activity.

(ii) Critical path and its duration.

Also find the minimum number of cranes the project must have for its activities 2 - 5, 3 - 7 and 8 - 9 without delaying the project. Then, is there any change required in PERT network. If so, indicate the name.

19. (a) A factory needs 36000units annually of a component that cost Rs 2 per CO4- App (16) unit. Cost of each order placing is Rs 25 and inventory carrying cost is Rs 10 per year.

4

(i) Find the economic lot size and the total inventory cost.

(ii) What is the time between placing of order.

(iii) The supplier offers 2% discount if a single order is placed. Should the company accept it.

(b) A machine owner has three machines of purchase price Rs 6000 each CO4 Ana (16) and cost per year of maintaining each machine is same. Two of these machines are two-year-old and the third is one-year-old. He is considering a new machine of purchase price Rs 8000 with 50% more capacity than one of the old ones. The estimates of maintaining cost and resale price for new machine are as given below.

Year	1	2	3	4	5	6	7	8
Maintenance cost(Rs)	1200	1500	1800	2400	3100	4000	5000	6100
Resale price (Rs)	4000	2000	1000	500	300	300	300	300

Assuming that the loss of flexibility due to fewer machines is of no importance, and he continues to have sufficient work for three of the old machines, what should his policy be.

- 20. (a) Sunil Medicals is manned by three salesmen. Any salesman can provide CO5-App (16) desired service to any customers. The customers arrive at the counter according to Poisson distribution at an average rate of 30 per hour. The service time is exponential with a mean rate of 3 min.
 - (i) What fraction of time are all three attendants busy.
 - (ii) What is the mean number of customers waiting to be attended.
 - (iii) What average time does a customer spend at the shop.
 - (iv) What is the probability that a customer has to wait.

Or

- (b) (i) Explain the terms in relation to game theory. CO5-App
 - (a) Mixed strategy
 - (b) Saddle point
 - (c) Dominance
 - (ii) Solve the following games.

5

(16)