		Reg. No. :										
	Question Paper Code: 99733											
	B.E./B.1	ech. DEGREE E	XAMIN	ATIC	DN, N	OV	2022	2				
			ective		,							
		Mechanical	Engine	eering	,							
	1	9UME933 – MA	CHINE	LEAI	RNIN	G						
		(Regulat	tions 20	19)								
Du	ration: Three hours						М	axin	num:	100	Mar	ks
		Answer Al	LL Ques	stions								
	PART A - $(10 \text{ x } 2 = 20 \text{ Marks})$											
1.	Application of machine lea	arning methods to	large d	atabas	ses is	calle	ed				CO	1 - U
	(a) Data mining (b) Artif	ficial intelligence	(c) Big	data	comp	uting	g	(d)	Inte	rnet o	of Th	ings
2.	Which of the following is	the best machine	learning	; meth	od?						CO	1 - U
	(a) Scalable (b) A	Accuracy	(c) Fas	t				(d)	All	of the	e abo	ve
3.	Regression models a targe	t prediction value	based of	on		_					CO	1 - U
	(a) Dependent variable		(b) Inde	epend	ent va	iriab	le					
	(c) Independent value		(d) Dep	ender	nt valı	ıe						
4.	If the cost function is conv	vex, then it conver	ges to a			_					CO	1 - U
	(a) Local minimum (b) L	local maximum	(c) G	lobal	minin	num		(d) (Globa	al ma	xim	ım
5.	In KNN algorithm, to fi distance is used.	nd out the neare	st neigh	bors				_			CO	1- U
	(a) Polar (b) S	patial	(c) Euc	lidiar	1			(d)	Nau	tical		
6.	What is called the average and actual output?	squared difference	ce betwe	een cla	assifie	er pr	edic	ted o	outpu	t	CO	1 - U
	(a) Mean relative error		(b) Me	an sq	uared	erro	or					
	(c) Mean absolute error		(d) Ro	ot me	an squ	uared	d err	or				

7.	is an example of sequential ensemble model						
	(a) AdaBoost (b) Bootstrapping (c) Random forest (d) Decision	on tree					
8.	When Increase in the ensemble size will leads to	CO4- U					
	(a) Low Storage (b) High Error Rate (c) Low Error Rate (d) Less Time	e					
9.	The Modular neural network (MNN) is a neural network that has main branches.	CO5- U					
	(a) 4 (b) 2 (c) 6 (d) 8						
10.	 The network that involves backward links from output to the input and hidden layers CO5- U is called as 						
	(a) Self organizing maps (b) Perceptrons						
	(c) Recurrent neural network (d) Multi layered perceptron						
	PART - B (5 x 6= 30 Marks)						
11.	11. Classify about parametric machine learning algorithm and nonparametric CO1-U machine learning algorithm.						
12.	Explain about the Logistic Function.	CO1- U					
13.	Explain the Support Vector Machine algorithm.	CO1- U					
14.	Explain about bootstrap aggregation (bagging) method.	CO3- App					
15.	15. Using sigmoid function for $x_1 = 0.1$ and want to predict the output. The COS network has optimized weight and bias where $w_1 = 0.15$ & $b_1 = 0.4$.						
	PART – C (5 x 10= 50 Marks)						
16	 (a) Explain about the parametric machine learning algorithm and CO1-U how is it different from a nonparametric machine learning algorithm? Or 	(10)					
	(b) Explain the term good fit, over fit and under fit in machine CO1- U learning with suitable examples.	(10)					
17	(a) Using the following Data Set to find B_0 , B_1 and predicted Y CO2-App values using Linear Regression Algorithm. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(10)					

- (b) Explain the step by step procedure to solve a Data Set problem to CO2-App (10) minimize the error between the predicted values (Yp) and actual values (Y) using Gradient Descent algorithm.
- 18 (a) A mobile company conducted a survey about the selection of CO2- App (10)
 Mobile phones and the survey results are given below. Predict the choices of the customers using Naive Bayes Algorithm.

Features	Appearance	Class			
Good	Good	Buy			
Moderate	Moderate	Buy			
Good	Good	Buy			
Good	Good	Buy			
Good	Good	Buy			
Moderate	Moderate	Not to buy			
Moderate	Moderate	Not to buy			
Good	Good	Not to buy			
Moderate	Moderate	Not to buy			
Moderate	Moderate	Not to buy			
Or					

(b) Use the KNN Algorithm to predict the new instance value for the CO2- App (10) given dataset.

Find the new instance prediction for the name Angelina, Age 5 and Gender Female.

Name	Age	Gender	Sport
Ajay	32	М	Football
Mark	40	М	Neither
Sara	16	F	Cricket
Zaira	34	F	Cricket
Sachin	55	М	Neither
Rahul	40	М	Cricket
Pooja	20	F	Neither
Smith	15	М	Cricket
Laxmi	55	F	Football
Michael	15	М	Football

19	(a)	Explain in detail about the Random Forest Algorithm with an	CO3- App	(10)
		example.		
		Or		
	(b)	Explain in detail about the AdaBoost model with an example.	CO3- App	(10)
20	(a)	Explain in detail about the Convolutional neural network (CNN)	CO3- App	(10)

Or

model.

(b) Explain about Deep feed forward networks or feed forward CO3-App (10) neural networks or multilayer perceptron (MLP)