4
1 N

Reg. No. :					

Question Paper Code: 99711

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Elective

		LI	CCLIVC		
		Mechanica	l Engineering		
		19UME911- COMI	POSITE MATER	IALS	
		(Regula	ation 2019)		
Dur	ation: Three hours			Maximum: 10	0 Marks
		Answer A	LL Questions		
		PART A - (10	x 1 = 10 Marks		
1.	Major load carrier in o	lispersion-strengthen	ed composites.		CO1- U
	(a) Matrix	(b) Fiber	(c) Both	(d) Can'	t define
2.	Mechanical properties	of fiber-reinforced c	omposites depend	d on	CO1- U
	(a) Properties of const	ituents	(b) I	nterface strength	
	(c) Fiber length, orien	tation, and volume fra	action (d) A	All the above	
3.	Size range of fibres us	sed in dispersion strer	ngthened polymer	composites	CO1- U
	(a) 0.01-0.1 μm	(b) 0.01-0.1 nm	(c) 0.01-0.1	mm (d) None of	the above
4.	The engineering mater	rials known as "plasti	ics" are more corr	ectly called	CO1- U
	(a) Polyvinyl chloride		(b) Polymers	5	
	(c) Polyethylene		(d) Mers		
5.	5. Al-alloys for engine/automobile parts are reinforced to increase their CO1				
	(a) Strength (b) We	ear resistance	(c) Elastic mod	lulus (d) Densi	ity
6.	Give an example of resistance of carbon–c	•	t is used to impr	ove the oxidation	CO1- U
	(a) HfC	(b) B_2O_3	(c) Ni	(d) Si_3N_4	
7.	Ceramic matrix compo	osites have matrices of	of		CO1- U
	(a) Alumina		(b) Calcium	n Alumino Silicate (C	AS)
	(c) Lithium Alumino	Silicate (LAS)	(d) All of the	ne above	

8.		amic Matrix Compositiventional ceramics	tes are designed	to improve	of	CO1- U
	(a) T	Γoughness	(b) Brittleness	(c) density	(d) None of th	e above
9.	Flav	vs can occur due to fibre	S			CO1- U
	(a) I	Fibres broken		(b) Kinked or wa	avy fibres	
	(c) l	rregular distributions of	fibres	(d) All of the abo	ove	
10	In u	ltrasonic testing, operatially	ng frequency limit	for composite mater	rials is	CO1- U
	(a) 5	5 MHz or less		(b) 50 Hz or less		
	(c) 5	50 kHz or less		(d) 500 Hz or less		
			$PART - B (5 \times 2 =$	10 Marks)		
11	Wri	te applications about The	ermoset matrix.			CO1- U
12	Disc	cuss about applications o	f Al metal matrix co	emposites.		CO1- U
13	List advantages of metal matrix composites					
14	Discuss about applications of ceramic matrix composites.					
15	Wri	te short notes on Tap tes	t.			CO1- U
			$PART - C (5 \times 1)$	6= 80 Marks)		
16	(a)	Discuss about propertie materials.	es of composite ma	terials over convent	ional CO1-U	(16)
			Or			
	(b)	Discuss about propertie Glass fibre in detail.	s, applications, adva	antages and limitation	ons of CO1-U	(16)
17	(a)	Explain about the PM method' with neat sketo	•	process of 'Hand	layup CO1-U	(16)
	(1.)	T	Or		CO1 II	(1.6)
	(b)	Explain with neat sketc	n the process Filam	ient winding .	CO1-U	(16)
18	(a)	Describe about the pruniqueness in MMC ma	anufacturing process		ut its CO1-U	(16)
	(b)	Explain about the chara	Or acteristics and variou	as types of MMCs.	CO1-U	(16)

19	(a)	Describe about the process of "chemical vapor deposition" and	CO1-U	(16)
		write about its uniqueness in CMC manufacturing process.		
		Or		
	(b)	Explain the process Cold pressing and Sintering process.	CO1-U	(16)
20	(a)	Explain with a neat sketch the Ultrasonic testing.	CO1-U	(16)
	,	Or		` '
	(b)	Demonstrate the Non-Destructive Testing method of 'Radiographic	CO1-U	(16)
		testing' with neat sketch.		