
Reg. No.:

Question Paper Code: 93022

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Third Semester

Computer Science and Engineering

19UMA322- Probability, Queueing Theory and Numerical Methods

(Regulation 2019)

(Common to Information Technology)

Duration: Three hours Maximum: 100 Marks

Answer All Questions

PART A - (10x 1 = 10 Marks)

If X is the discrete random variable having the probability mass function, then K CO1- App value is.

X	1	2	5
P(X)	9 k ²	k ² + 2k	k
(h	1/5	(c) -1	/2

(a)1/5

(d) 1/2

A Continuous r.v has a p.d. $f(x) = 3x^2$, $0 \le x \le 1$, If P(X > b) = 0.05, then value of b is

CO1- App

- (a) 0.9308
- (b) 0.9803
- (c) 0.9830

(d) 0.9038

Choose the correct relation between L_s , L_q , W_s & W_q

CO6- U

$$(a) \frac{L_s}{L_q} < \frac{W_s}{W_q}$$

$$(b) \frac{L_q}{L_s} > \frac{W_q}{W_s}$$

$$(c) \frac{L_q}{W_q} = \frac{L_s}{W_s}$$

$$(d) \frac{L_q}{W_q} < \frac{L_s}{W_s}$$

$$(b)\frac{L_q}{L_s} > \frac{W_q}{W_s}$$

$$\left(\mathbf{c}\right)\frac{L_q}{W_q} = \frac{L_s}{W_s}$$

$$(d)\frac{L_q}{W_q} < \frac{L_s}{W_s}$$

For a model (M/M/1): (∞ /FCFS)The arrival rate is 3 per hour and service rate 4. is 4 per hour then W_s

CO2- App

- (a) 55 Minutes
- (b) 65 Minutes
- (a) 60 Minutes
- (b) None of the above
- One of the normal equation of parabola $y = a + bx + cx^2$ is

CO6- U

$$\sum xy = a \sum x + (a) \sum_{h \sum x^2 + c \sum x^3}$$

(b)
$$\sum xy = a \sum x^2 + \frac{1}{2}$$

(c)
$$\sum y^2 x = a \sum x^2 + \frac{1}{3}$$

$$\sum xy = a\sum x + b\sum x^{2} + c\sum x^{3}$$
(b)
$$\sum xy = a\sum x^{2} + b\sum x^{3} + c\sum x^{4}$$
(c)
$$\sum y^{2}x = a\sum x^{2} + b\sum x^{2} + b\sum x^{3} + c\sum x^{4}$$
(d)
$$\sum xy^{2} = a\sum x + b\sum x^{2} + c\sum x^{3}$$

6.	number of no method of least squares	rmal equations are	required to f	fit a straight line	e in CO6- U
	(a) 1	(b) 2	(c) 3	(d) 4	4
7.	For a 3 ×3 matrix, 5, then dominant Eigen v	_	values, trace of	f matrix is equal t	co 3 CO6- U
	(a) 12	(b) -12	(c) -13	(d)	10
8.	Iteration method conve	erges if $ g^1(x) $			CO6- U
	(a) >1	(b) <1	(c) = 0	(d) >	>0
9.	prior values are	required to predict	the next value	in Milne's method	CO6- U
	(a) 1	(b) 2	(c) 3	(d)	4
10.	The first two steps of the	he fourth order Run	gekutta metho	d use	CO6- U
	(a) Backward Euler's r	nethod	(b)Taylor	r's series method	
	(c) Forward Euler's me	ethod	(d) Euler	's method	
		PART - B	$(5 \times 2 = 10 \text{Mar})$	ks)	
11.	For Binomial distributi	on mean is 10 and	variance is 4, C	Compute $P(X = 2)$	CO1- App
12.	Write down the little's	formula			CO6- U
13.	Write down the Norma	l Equations of the c	curve $y = ae^{bx}$		CO6- U
14.	Write the condition of	convergence of Nev	wton's method		CO6- U
15.	Write down the Adam'	s predictor and corr	ector formula.		CO5 U
		PART – 0	$C (5 \times 16 = 80)$	Marks)	
16.	x 0 P(X) 0 (i) Calc (ii) Calc	the following district the following district 1 2 3 k $2k$ $2k$ culate the value of culate $P(X < 5) \& P$ culate Cumulative I	$\begin{array}{ c c c c } \hline & 4 & 5 \\ \hline & 3k & k^2 \\ \hline & k' \\ \hline & 1.5 & < X & < 4.5 \\ \hline \end{array}$	_	CO1-Ana (8)
	` '	e moment genera	•	•	al CO1-Ana (8)

Or

(b) (i) A RV X has the following distribution

X	0	1	2	3	4	5	6
P(X)	a	2a	2a	3a	3a	6a	8a

(i). Compute $P(X \ge 2)$ and E(X)

- (ii) Compute Var(X)
- (ii) If the density function of a continuous r.v X is given by

CO1 -Ana (8)

(8)

(16)

(16)

(8)

CO1 -Ana

$$f(x) = \begin{cases} ax & 0 \le x \le 1 \\ a & 1 \le x \le 2 \\ 3a - ax & 2 \le x \le 3 \\ 0 & otherwise \end{cases}$$

- (a) Compute the value of "a"
- (b) Compute the c.d.f of X
- 17. (a) Assume that the good trains are coming in a yard at the rate of 30 CO2 -Ana trains per day and suppose that the inter arrival times follow an exponential distribution. The service time for each train is assumed to be exponential with an average of 36 minutes. If the yard can admit 9 trains at a time(there being 10 lines, one of which is reserved from shunting purpose), Identify the Model ,Compute the probability that the yard is empty and Compute the average queue length.

Or

- (b) Customers arrive at a watch repair shop according to a Poisson CO2-Ana process at a rate of one per every 11 minutes, and the service time is an exponential random variable with mean 6 minutes. Identify the Model, Compute the following i) the average number of customers in the shop L_s ii) the average time a customer spends in the shop W_s iii) the average number of customers in the queue L_q iv) the probability that the server is idle.
- 18. (a) (i) Applying least square method techniques fit a straight line CO3-App y = a + bx (8)

	0	3	5	6	8	10	12
Y	2	5	8	9	11	12	15

(ii) Applying group average method fit a second degree parabola CO3- App

 $y = a + bx + cx^2$ for the following data

X	1	2	3	4	5
Y	5	12	26	60	97

(b) (i) Applying method of moments fit a straight line y = ax + b

CO3- App

(8)

(8)

X	1	3	5	7
Y	4	8.5	11.5	15

(ii) Applying least square method techniques fit the curve $y = ab^x$ with CO3-Ap the following data:

X	1	2	3	4	5
Y	150	99	60	48	18

19. (a) (i) Compute the real positive root of $x \log_{10} x = 4.5$ by Newton's CO4-App (8) Raphson Method. Correct to 3 decimal places

(ii) Using Gauss Seidel method, solve the following Equations

CO4-App (8)

$$3x - 13y - 3z = 49$$
, $5x - 6y + 17z = 45$, $11x + 2y - 2z = -31$

Or

(b) (i) Applying Power method compute numerically largest Eigen value CO4 -App (8)

of
$$\begin{pmatrix} 9 & 10 & 8 \\ 10 & 5 & -1 \\ 8 & -1 & 3 \end{pmatrix}$$
 by taking $X_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

(ii) Compute the real positive root of $3x - \cos x = 1$ by Iterative method CO4 -App (8)

20. (a) (i) Using R.K Method of 4th order, solve $\frac{dy}{dx} = y - x^2$ with y (0.6) = CO5-App (8)

1.7379, Compute y (0.8) by taking h=0.2

(ii) Using Taylor series method Compute y(0.1) for

CO5-App (8)

(16)

$$\frac{dy}{dx} = x^2 y - 1$$
 with y(0) = 1

Or

(b) Given $\frac{dy}{dx} = x^3 + y$, y(0) = 2, y(0.2) = 2.443, y(0.4) = 2.99, y(0.6) = 3.68, Compute y(0.8) by Milne's Predictor & Corrector method