A		Reg. No. :						
		Question Pa	aper Coo	de: 930)24			
	B.E./B.	.Tech. DEGREE H	EXAMINA	TION, 1	NOV 20)22		
		Third	Semester					
		Electrical and Ele	ectronics E	ngineeri	ng			
	19UMA324- Probal	bility, Statistics, C	complex Ai	nalysis a	nd Nurr	nerical Me	ethods	
		(Regul	ation 2019)				
Dur	ation: Three hours					Maximur	n: 100 Mar	:ks
		Answer A	All Questic	ons				
		PART A - (1	0x 1 = 10	Marks)				
1.	The degrees of freedom	in t-tests is			CO)6- U		
	(a) n-1	(b) n-2	(c) n-3	3		(d) n-4	ł	
2.	In Chi-square the sample	le observations she	ould be				CO	6- U
	(a) dependent	(b) independent	(c) equal			(d) noi	ne of these	
3.	The r th moment about	origin is					CO	6- U
	(a) $\mu(X)$	(b) $\mu(X^2)$	(c) µ	$u(X^{r})$	(d) None of	the above	
4.	Which of the following	discrete distributi	on has equ	al mean	and var	riance?	CO	6- U
	(a) Binomial	(b) Poisson	(c) Ga	ımma		(d) Un	iform	
5.	Iteration method conver	rges if $ g^1(x) $					CO	6- U
	(a) >1	(b)<1	(c)=()	(d)	>0		
6.	Newton's method is als	o called method o	f				CO	6- U
	(a) tangents	(b) slope	(c) se	ecants		(d) fals	se	
7.	Taylor Series method v Milne's and Adam's me		l to give so	ome	valu	es for RK	, CO	6- U
	while s and Adam s me	culous						

8.	prior values are required to predict the next value in Adam's method								
	(a) 1	(b)2	(c) 3	(d) 4					
9.	Find the poles of $f(z)$	$=\frac{z^{2}+1}{1-z^{2}}$			CO6- U				
	(a) 1,0	(b) 1,-1	(c) 1,2	(d) 0,0					
10.	The poles of $z \cot z$ is	S			CO6- U				
	(a) 0	(b) $\pm n\pi$	(c) 1	(d) π					
		PART – B (5 x 2	2= 10Marks)						
11.	What are the parameters and statistics in sampling? CO1- R								
12.	For Binomial distribution mean is 6 and variance is 2,Find P[X=x]. CO2- App								
13.	Write the condition of	convergence of Newto	on's method.		CO3- U				
14.	Using Taylor's series	method find $y(1.1)$ giv	y' = x + y with y(y) = x + y with y(y) = y + y	(1) = 0	CO4- App				
15.	Using Taylor's series method find $y(1.1)$ given $y' = x + y$ with $y(1) = 0$ CO4- App Find the Residues of $f(z) = \frac{z+1}{z(z-2)}$ CO5 App								
		PART - C(5)	x 16= 80Marks)						
16.	made. It was four	nd that 220 students hav	sults of 500 students wa we failed, 170 have		Ana (8)				

secured a third class, 90 have secures a second class and the rest, a first class. So these figures support the general belief that the

above categories are in the ratio 4:3:2:1 respectively?

(ii) The following data are collected on two characters. CO1- Ana (8)

	Skilled	Non Skilled
Male	40	20
Female	10	30

Using chi-square test to find is there any relation between skilled and Non Skilled.

Or

(b) (i) A group of 10 rats fed on diet A and another group of 8 rats CO1 - Ana (8) fed on diet B, recorded the following increase in weight.

Diet	5	6	8	1	12	4	3	9	6	10
А										
Diet	2	3	6	8	10	1	2	8		
В										

Find the variances are significantly different.

(ii) The theory predicts the population of beans in the four groups CO1 -Ana (8)A, B, C and D should be 9:3:3:1. In an experiment among 1600beans, the numbers in the four groups were 882, 313, 287 and 118. Does the experimental result support the theory?

17. (a) A Random Variable X has the following probability distribution CO2 - App (16)

					C	1	5	
X=x	0	1	2	3	4	5	6	7
P(X=x)	0	а	2a	2a	3a	a^2	$2a^2$	$7a^2+a$

Find (i) The value of 'a',

- (ii) $P(X < 6), P(X \ge 6), P(0 < X < 4),$
- (iii) P(X < 6/X > 4),

(iv) Find the minimum value of ' λ 'such that $P(X \le \lambda) > \frac{1}{2}$.

Or

(b) Calculate the correlation coefficient for the following heights CO2 -App (16) (inches) of fathers X and their sons Y.

Х	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

18. (a) (i) Using Newton's Raphson method find the real positive root of CO3- App (8) x^4 -x-10=0.

(ii) Solve 4x + 2y + z = 14, x + 5y - z = 10, x + y + 8z = 20 by CO3- App (8) Gauss Elimination method.

Or

(b) (i) Solve 4x + 2y + z = 14, x + 5y - z = 10, x + y + 8z = 20 by CO3- App (8) Gauss Seidel method.

(ii) Using Power method find numerically largest Eigen value of CO3- App (8) $\begin{pmatrix} 25 & 1 & 2 \end{pmatrix}$

- 1 3 0
- 2 0 4

19. (a) (i) Using Taylor's series method find y(0.1) for
$$\frac{dy}{dx} = x^2 y - 1$$
, CO4-App (8)
y(0) = 1
(ii) Given $\frac{dy}{dx} = 1 + y^2$, y(0) =0, y(0.2) = 0.2027, y(0.4) =0.4228, CO4-App (8)
y(0.6) = 0.6841 evaluate y(0.8) by Adams – Bash forth Method.
Or
(b) (i) Using R-K method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with CO4 -App (8)
 $y(0) = 1$ at $x = 0.2$
(ii) Using Milne's method find y(4.4) given $5xy' + y^2 - 2 = 0$ CO4 -App (8)
given
 $y(4) = 1$, y(4.1) = 1.0049, y(4.2)= 1.0097 and y(4.3)= 1.0143
20. (a) (i) Evaluate using Cauchy's Residue theorem for
 $f(z) = \int_{c} \frac{e^{z} dz}{(z^2 + \pi^2)^2}$, where 'C' is $|z| = 4$.
 $7z - 2$ CO5- App (8)

(ii) Find the Laurent's series of $f(z) = \frac{12-2}{z(z+1)(z-2)}$ valid in the region 1 < |z+1| < 3

Or

(b) (i) Using contour integration, to find the value of $\int_{0}^{2\pi} \frac{d\theta}{13-5\cos\theta}$. CO5- App (8)

(ii) Expand $\frac{1}{z(z-1)}$ as Laurent's series valid in the regions CO5-App (8) 0 < |z| < 1