A
Δ
∡ ъ

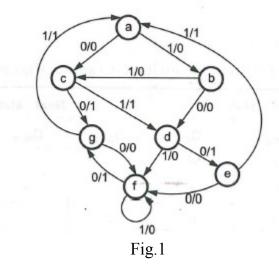
Reg. No.:

Question Paper Code: 53306

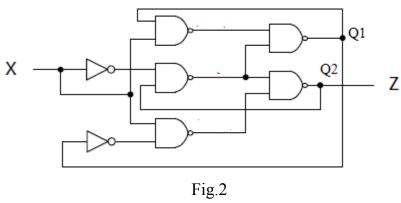
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022

Third Semester

Electrical and Electronics Engineering


		Electrical and Elec	ctronics Engineering							
15UEE306 -DIGITAL LOGIC CIRCUITS										
(Regulation 2015)										
Dura	Duration: Three hours Maximum: 100 Marks									
Answer ALL Questions										
PART A - $(10 \times 1 = 10 \text{ Marks})$										
1.	Convert binary 11111	CO1- R								
	(a) EE2 ₁₆	(b) FF2 ₁₆	(c) 2FE ₁₆	(d) FD2 ₁₆						
2.	Any signed negative b	CO1- R								
	(a) MSB	(b) LSB	(c) Byte	(d) Nibble						
3.	Canonical form is a ur	CO2- R								
	(a) SOP	(b) Minterm ((c) Boolean Expressions	(d) POS						
4.	The format used to combinations of logic	CO2- R								
	(a) Truth table.									
	(c) Boolean constant (d) Boolean variable									
5.	What is a shift register that will accept a parallel input, or a bidirectional serial load and internal shift features, called?									
	(a) Tri state	(b) End around	(c) Universal	(d) Conversion						
6. A basic S-R flip-flop can be constructed by cross-coupling of which basic logic gates?				CO3- R						
	(a) AND or OR (b) XOR or XNOR (c) NOR or NAND			(d) AND or NOR						

7.	Table that is not a part of asynchronous analysis procedure is							
	(a) T	Γransition table	(b) State table	(c) Flow table	(d) Excitation	on table		
8.	Hov	w much locations a	ın 8-bit address code c	an select in memory?		CO4- R		
	(a) 8	3 locations	(b) 256 locations	(c) 65,536 locations	(d) 131,072	locations		
9.	Each unit to be modeled in a VHDL design is known as							
	(a) I	Behavioral model		(b) Design architecture				
	(c) I	Design entity		(d) Structural model				
10.	Which of the following describes the connection the local component? (a) Port map		(b) One to many map	ty port and	CO5-R			
	(c) (One to one map	D. I. D. II. D. (4	(d) Many to many map				
			PART - B (5 x)	2= 10 Marks)				
11.	Why Excess-3 code is called self complementing code? CO1- U							
12.	Draw the circuit diagram of full adder using two half adders. CO2- R							
13.	. Compare Moore and Melay circuits.							
14.	. Define static hazard.					CO4- R		
15. What are the various modeling techniques in VHDL?						CO5- R		
			PART - C (5	x 16= 80 Marks)				
16.	(a)	(i) Encode the be Hamming Code.	pinary word 1011 int	o seven bit even parity	CO1- U	(10)		
		(ii) Write short n	otes on binary weighte	ed code.	CO1- U	(6)		
			Or					
	(b)	(i) With a neat TTL NAND gate	•	e working of two input	CO1- U	(10)		
		(ii) Compare tote	em pole and open colle	ector outputs.	CO1- U	(6)		
17.	(a)	Design a 3:8 deand maxterm ger	_	operation as a minterm	CO2- Ana	(16)		
	(1.)	D		12412	CO2 4	(1.6)		
	(b)	Design a circuit equivalent gray of		r bit binary code into its	CO2- Ana	(16)		


18. (a) Design a MOD-7 synchronous counter using JK flip flop and CO3- Ana implement it. Also draw its timing diagram. (16)

Or

(b) Design a clocked sequential circuit for the state diagram CO3-Ana shown in Fig.1 using T flip flop. (16)

- 19. (a) (i) Analyze the following asynchronous network shown in Fig.2 using a flow table. Starting in the total stable state for which X = Z = 0.
 - (ii) Are there any races in the flow table?

Or

(b) Show how to programme the fusible links to get a 4 bit gray CO4-Ana code from the binary inputs using PLA and PAL and compare the design requirements with PROM.

CO4-Ana

(16)

20. (a) Write a VHDL program for full adder using structural CO5-U modeling and 1: 4 DMUX using data flow modeling. (16)

Or

- (b) (i) Explain the various operators supported by VHDL. CO5-U (8)
 - (ii) Write a VHDL code to realize a decade counter with CO5-U (8) behavioral modeling.