A
\boldsymbol{A}
4 A

Reg. No. :					

Question Paper Code: 52308

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022

Second Semester

Civil Engineering

15UEE208 - BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to Mechanical Engineering, Chemical and Agriculture Engineering)

(Regulation 2015)

		(1togulatio	511 2015)				
Dur	ation: Three hours	M	Maximum: 100 Marks				
		Answer ALI	Questions				
		PART A - (10 x	1 = 10 Marks)				
1.	1. Three resistances of 10 Ω , 15 Ω and 30 Ω are connected in parallel the total resistance of the combination is						
	(a) 5 Ω	(b) 10 Ω	(c) 15 Ω	(d) 55 Ω			
2.	All the rules and la containing	nws of DC circuit als	so apply to AC circui	t	CO1- R		
	(a) Capacitance only	(b) Inductance only	(c) Resistance only	(d) all abov	e		
3.	The field coils of DC		CO2- R				
	(a) Mica	(b) Copper	(c) Cast iron	(d) Carbon			
4.	What will happen if the	he back Emf of a DC n	notor vanishes suddenly	?	CO2-U		
	(a) The motor will sto	pp	(b) The motor will continues to run				
	(c) The armature may	burn	(d) The motor will run noisy				
5.	In "p" type material, i	minority carriers would	l be:		CO3- R		
	(a) Holes	(b) Dopants	(c) Slower	(d) Electror	ıs		

(c) Theta

CO₃-R

(d) Beta

6. A current ratio of I_C/I_E is usually less than one and is called:

(b) Alpha

(a) Omega

7. Convert 10101101₂ to decimal number

CO4-R

(a) 172

- (b) 173
- (c) 174

(d) 175

8. Among the following which one is universal gate

CO4-R

- (a) NOT
- (b) NAND
- (c) AND

- (d) OR
- 9. In case of amplitude modulation if modulation index > 1 then

CO5-R

- (a) There will be interference with another signal
- (b) The bandwidth will decrease
- (c) The wave will get distorted
- (d) The efficiency of transmission will improve.
- 10. India's first three-axis stabilized geostationary communication satellite is

CO5-R

- (a) Rohini
- (b) Aryabhatta
- (c)Apple

(d) Bhaskara

$$PART - B$$
 (5 x 2= 10 Marks)

11. Define power and power factor in AC circuits

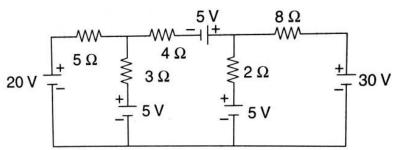
CO1- R

12. Mention the various types of single phase induction motor

CO2- R

13. List the biasing techniques for transistor.

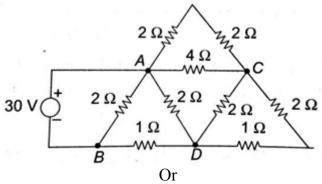
CO3-R


14. Prove that $A + \bar{A} B = A + B$

CO4-App

15. Compare analog and digital signals

CO5-Ana


16. (a) (i) Determine the current flow through 2 Ω resistor and voltage CO1- App across 8 Ω resistors in given circuit.

(ii) Determine the total equivalent resistance for the circuit (a)

(8)

Derive an expression for RMS value and average value of a (b) sinusoidal waveform.

CO1- App

(16)

17. (a) Describe with neat sketch construction and working of single CO2-U (16)phase transformer.

Or

- With neat sketch explain construction and working of moving CO2- U (b) (16)coil instruments.
- 18. Draw and explain common base configuration of BJT and its CO3- Ana (16)(a) charactertics.

Or

- Describe the principle of working of forward based PN junction CO3- Ana (b) (16)diode and it's charactertics.
- (i) Convert the Boolean expression $A\overline{B}C + \overline{B}CD + A\overline{C}D$ to CO4- U 19. (a) (8) standard SOP form.
 - (ii) State and prove Demorgan's theorem.

CO4-U

(8)

- (i) Simplify the Boolean expression using laws and rules of CO4-U (b) (8)
 - Boolean algebra $Z = [A\overline{B}(C + BD) + (\overline{AB})C]$

CO4-U

(ii) Implement the expression using logic gates

(8)

- (a) AB+BCD+EFGH
- (b) (A+B)(F+G+H+I)

20. (a) With neat diagram explain amplitude modulation and frequency CO5- U modulation. (16)

Or

- (b) With neat block diagram explain the operation of the following CO5-U (16)
 - (i) Satellite communication systems
 - (ii) Optical fibre communication systems