A		Reg. No.	:										
		Question Pa	ıper	Code	e: 94	303	3						
	B.	.E. / B.Tech. DEGRE	E EXA	AMIN	ATIO	N, 1	NOV	202	2				
		Fou	rth Se	mester	.								
		Electrical and E	lectro	onics 1	Engin	eerii	ng						
		19UEE403 – Princ	iples o	of Dig	ital E	lectr	onic	S					
		(Regu	ilatior	ns 2019	9)								
Dur	ation: Three hours							Max	kimu	m: 1	00 N	⁄larks	
		Answer	ALL	Quest	ions								
		PART A - ([10 x]	1 = 10	Mark	xs)							
1.	BCD code ranges	from										CO	1 - U
	(a) 0 to1	(b) 0 to 9		(c) 0	to 15				(d)) 0 tc	o 7		
2.	Identify the even parity code from the following										CO	1 - U	
	(a) 11001 (b) 1110 (c) 0111							(d))011	0			
3.	What will be the number of selection lines in a 16 to 1 Multiplexer?								CO	1 - U			
	(a) Type- 0	(b) Type -1		(c)	Туре	e -2			(d)	Туре	e - 3		
4.	Find the number of the gates required to build a half adder are CO1- U												
	(a) EX-OR gate and NOR gate			(b) EX-OR gate and NOR gate									
	(c) EX-OR gate and AND gate (d) Four NAND g					D ga	ates						
5.	What is the output of SR flip flop when S=1, R=0 is?							CO	1 - U				
	(a) 1	(b) 0		(c) N	Vo cha	ange	;		(d)	High	n imp	pedar	ice
6. What is output of D Flipflop when D=1?												CO	1- U
	(a) 1	(b)0		(c)]	No Cł	hang	ge	(d) 2	Х				
7.	How many natura	l states will there be i	n a 4-1	bit rip	ple co	unte	er?					CO	1 - U

(a) 4 (b) 8 (c) 16 (d) 32

8.	How much storage capacity does each stage in a shift register represent?							
	(a) (One bit (b) two bits (c) four bits		(d) eight bits				
9.	The	Verilog HDL	code starts with the ke	eyword		CO1- U		
	(a) a	always	(b) module	(c) end module	(d) items			
10.	Whi	ch of the follo		CO1- U				
	(a) i	f-else loop	(d) All the a	(d) All the above				
			PART – B	(5 x 2= 10 Marks)				
11.	Con	Convert the following decimal numbers to the indicated bases						
		7526.75 to (?) ₈ b) 1856.959 to (?)	16				
12.	Define SOP and POS.							
13.	Define a sequential logic circuit. Give an example.							
14.	Define Races .							
15.	Explain the purpose of developing HDL code for digital design.							
			PART –	C (5 x 16= 80Marks)				
16.	(a)	Convert the f (147.3 (0100 (38.21 (231	following B_{8} to () ₁₆ 10101000) ₂ to () ₁₆ 1) ₁₀ to () ₂ .3) ₁₀ to () ₈ Or		CO1- U	(16)		
	(b)	Explain the t example for	ypes of weighted and a each type.	non-weighted codes with an	CO1- U	(16)		
17.	(a)	(i) Design a Binary to Gray code converter.				p (8)		
		(ii) Design a	CO2- Ap	p (8)				
	(b)	(i) Implement = $\sum m (0, 1, 2)$	<i>D</i>) CO2- Ap	p (8)				
		(ii) Design 3	CO2- Ap	p (8)				
18.	(a)	Design a seq flip-flops.	uence detector to deter	ct the sequence 101 using JK	CO2- Ap	p (16)		
			Or					
	(b)	Design syncl sequence 1,3	nronous sequential cir ,4,5 repeatedly. Use T	cuit that goes through the co flip-flops for your design.	unt CO2-Ap	p (16)		

- 19. (a) An asynchronous sequential circuit has two internal states and one CO3- Ana (16) output. The excitation and output function describing the circuit are as follows. Y₁= x1.x2 + x1.y2 + x2.y1 , Y₂= x2+x1.y1.y2+x1.y1 Z=x1+x2 (i) Draw the logic diagram of the circuit.
 - (ii) Derive the transition table and output map.

Describe the behavior of the circuit.

Or

(b) An asynchronous sequential circuit is described by the following CO3- Ana (16) excitation and output equation.

Y = x1.x2 + (x1+x2).y Z= Y

- (i) Draw the logic diagram of the circuit.
- (ii) Derive the transition table and output map.

Describe the behavior of the circuit.

- 20. (a) Implement the following function using PLA, A(x,y,z)= CO2- App (16) $\sum m(1,2,4,6) B(x,y,z)=\sum m(0,1,6,7) C(x,y,z)=\sum m(2,6).$ Or
 - (b) Develop Verilog code to design 8 to 1 multiplexer using dataflow CO2- App (16) and behavioural modeling.