	L
F	•
	_

Reg. No. :					
O					

Question Paper Code: 55304

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022

Fifth Semester

Electrical and Electronics Engineering

15UEE504-ELECTRICAL MACHINE DESIGN

(Regulation 2015)

Dur	ation: Three hours		Maximum: 10	00 Marks		
	Answer A	ALL Questions				
	PART A - (1	$0 \times 1 = 10 \text{ Marks}$				
1.	The apparent flux density is defined as					
	(a) Actual flux/tooth area	(b) Total flux/tooth a				
	(c) Total flux=tooth area	(d) None of these				
2.	Stacking factor depends upon		CO1- R			
	(a) Thickness of core and insulation	(b) Thickness of cor	e			
	(c) Thickness of insulation	(d) Converter	(d) Converter			
3.	In lap winding, equalizer rings are used since					
	(a) Number of parallel path is = two	(b) Number of parallel p	r of poles			
	(c) Number of conductors is large	(d) Voltages are slightly	varying			
4.	The number of commutator segments in	a dc machine is equal to th	ne no. of	CO2- R		
	(a) Coil-sides (b) Turns	(c) Coils	(d) Slots			
5.	The leakage flux in a transformer depends upon the value of					
	(a) Load current (b) Supply frequency	(c) Mutual flux	(d) None of	the above		
6.	The function of oil in a transformer is			CO3- R		
	(a) to provide insulation and cooling	(b) to provide protection	ction against li	ghtning		

(d) to provide lubrication

(c) to provide protection to windings

7.	In the case of induction motors the ratio of length to pole pitch for minimum cost is taken as							CO4- R
	(a)	1.0	(b) 1.5 to 2	(c)	2 to 3	(d)	3 to 5	
8.	The number of parallel paths in an integral slot winding with P poles is equal to							CO4- R
	(a) l	P	(b) 2P	(c)	P/2	(d)	P/4	
9.	Tur	bo alternators	are characterized by					CO5- R
	(a) S	Short diameter	s and large axial leng	ths (b)	Short diame	eters and s	small axial	lengths
	(c)]	Large diameter	rs and small axial leng	gth (d) Large diam	eters and	large axial	lengths
10.	The	use of salient	poles on high speed a	ılternators	will cause			CO5- R
	(a) Excessive windage loss and excessive noise (b) Excessive windage loss but re							educed
	(c) l	Reduced winda	age loss but excessive	noise	(d) Reduced	windage	loss and lo	w noise
			PART – B	$(5 \times 2 = 1)$	0Marks)			
11.	Def	ine Iron space	factor.					CO1- R
12.		te the relation ous ratings of	between the armature dc machine.	e diameter	and commu	tator dian	neter for	CO2- R
13.	Hov	w yoke dimens	ions of a transformer	are fixed?				CO3- R
14.	•							
15.	Def	ine SCR. Wha	t are the effects of SC	R on mac	hine perform	ance?		CO5- R
			PART –	C (5 x 16	= 80Marks)			
16.	(a)	-	various factors that de	,	ŕ	ific	CO1- U	(16)
			Or					
	(b)	, ,	the insulating mates		ed in the	electrical	CO1- U	(8)
		(ii) What are	e the major consider	rations acc	counted for	the good	CO1- U	(8)
		design of ele	ctrical machines?					

- 17. (a) (i) Determine the air gap length of a dc machine from the CO2-App following particulars. Gross Length of core=0.12m, number of ducts one and is 10 mm wide, slot pitch=25mm,slot width=10mm, Carter's coefficient for slots and ducts=0.32, gap density at pole centre=0.7 Wb/m², field mmf per pole=3900A, mmf required for iron parts of magnetic circuit = 800A.
 - (ii) Derive the relationship between real and apparent flux CO2-App (8) densities in the armature teeth.

Or

- (b) Explain the various factors that are affected at the time of CO2-App (16) selection of number of poles in d.c.machines.
- 18. (a) (i) Derive the output equation of a single phase transformer. CO3- App (8)
 - (ii) Determine the dimensions of core and yoke for a 200 kVA, 50 Hz, single phasecore type transformer. A cruciform core is used with distance between adjacent limbs equal to 1.6 times the width of core laminations. Assume voltage per turn 14 V, maximum flux density=1.1 Wb/m², window space factor=0.9, current density 3 A/mm² and stacking factor=0.9. The net iron area is 0.56 d² in a cruciform core where d is the diameter of circumscribing circle. Also the width oflargest stamping is 0.85d.

Or

- The tank of a 1250 kVA natural oil cooled transformer has the CO3-App (16)dimensions length, width and height as 1.55mX0.65mx1.85m respectively. The full load loss is 13.1 kW.Find the number of assuming/m²-°C this transformer radiation=6;W/m²-°C due to convection=6.5;improvement in convection due to provision of tubes=40 percent; temperature rise=40°C; length of each tube=1m;diameter tubes=50mm.Neglect the top and bottom surfaces of the tank as regards cooling.
- 19. (a) (i) Find the values of diameter and length of stator core of a CO4-App 7.5kW,220V,50Hz,4 pole,3 phase induction motor for best power factor. Given: specific magnetic loading=0.4 Wb/m2; specific electric loading= 22000A/m; efficiency= 0.86; and power factor=0.87.also find the main dimensions if the ratio of core length to pole pitch is unity.

CO₃- App

(8)

(ii) Explain the design of rotor bars and slots.

CO4- App

(8)

Or

- (b) Determine the main dimensions, turns per phase, number of slots, CO4- App (16)conductor cross section and slot area of a 250 h.p., 3 phase, 50 Hz, 400V, 1410 r.p.m.slip ring induction motor. Bav=0.5 Wb/m2,ac= 30000A/m, efficiency=0.9, and power factor=0.9, winding factor=0.955, current density=3.5 A/mm². The slot space factor is 0.4 and the ratio of core length to pole pitch is 1.2.
- 20. (a) (i) Derive an output equation of synchronous machine.

CO5- App

(8)

(8)

(ii) Determine suitable stator dimensions for a 500 kVA,50Hz, CO5-App 3 phase alternator to run at 375 r.p.m. Take mean gap density over the pole pitch as 0.55 Wb/m², the specific electric loading as 25,000 A/m. The peripheral speed should not exceed 35 m/s.

Or

(b) Explain the steps taken into account in the design of field winding CO5- App (16)of a salient pole machine.