Reg. No.:										
-----------	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 99320

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022

Elective

Electrical and Electronics Engineering

19UEE920- MACHINE LEARNING

		(Regi	ılations 2019)	
Dura	ation: Three hours		Maximum: 1	00 Marks
		PART A - ($10 \times 1 = 10 \text{ Marks}$	
1.	Application of mac	hine learning method	ds to large databases is called	CO1 -R
	(a) data mining		(b) artificial intelligence	;
	(c) big data comput	ing	(d) internet of things	
2.	In what type of lear	ning labeled training	g data is used	CO1 -R
	(a) unsupervised lea	arning	(b) supervised learning	
	(c) reinforcement le	earning	(d) active learning	
3.	Regression trees are	e often used to be		CO2- R
	(a) Linear	(b) Non-linear	(c) Categorical	(d) Symmetrical
4	How do you choose	e the root node while	constructing a Decision Tree?	CO2- R
	(a) attribute with hi	gh entropy	(b) high entropy and int	formation gain
	(c) largest informat	ion gain	(d) None of the above	
5	ID3 stands for			CO3- R
	(a) Induction Decis	ion Tree	(b) Iterative Data base	
	(c) Iterative Dichot	omiser	(d) Iterative Decision T	ree
6	The output of traini	ng process in machi	ne learning is	CO3- R
	(a) machine learnin	g model	(b) machine learning algorith	m
	(c) null		(d) accuracy	

7	You are given reviews of few netflix and neutral. Classifying reviews of a ne	1	CO4- App
	(a) supervised learning	(b) unsupervised learning	
	(c) semisupervised learning	(d) reinforcement learning	
8	finds the most specific hypexample	othesis consistent with the training	CO4- R
	(a) Find-S (b) Rote-Learn	(c) Candidate Elimination (d) All or	f the above
9	Back propagation is a learning technic network by propagating weight changes	ique that adjusts weights in the neural	CO5- R
	(a) Forward from source to sink		
	(b) Backward from sink to source		
	(c) Forward from source to hidden node	es	
	(d) Backward from sink to hidden nodes	S	
10	The Bayes rule can be used in		CO5- R
	(a) Solving queries	(b) Increasing complexity	
	(c) Decreasing complexity	(d) Answering probabilistic query	
	PART – B	$(5 \times 2 = 10 \text{Marks})$	
11.	Define Machine Learning. Explain wit important?	h examples why machine learning is	CO1-U
12.	Differentiate between Gradient Descent	and Perceptron training rule.	CO2-U
13.	Explain Brute force Bayes Concept Lea	rning.	CO3 -U
14.	Consider a medical diagnosis problem hypotheses:	n in which there are two alternative	CO4 -App
	(i) That the patient has a particular form	of cancer (+) and	
	(ii) That the patient does not (-). A p comes back positive. The test returns a the cases in which the disease is acturesult in only 97% of the cases in Furthermore, .008 of the entire population whether the patient has Cancer or not us	correct positive result in only 98% of nally present, and a correct negative which the disease is not present.	
15.	Explain the methods involved in learning	ng disjunctive sets of rules.	CO5 -U

16. (a) Explain the steps in designing learning systems in detail.

CO1 -U

Or

(b) Describe the procedure of building Decision tree using ID3 with Gain and Entropy. Illustrate with example.

CO1-U (16)

(16)

17. (a) Write the final version space for the below-mentioned training example using the candidate elimination algorithm.

CO2 -App (16)

Origin	Manufacturer	Color	Decade	Туре	Example Type
Japan	Honda	Blue	1980	Economy	Positive
Japan	Toyota	Green	1970	Sports	Negative
Japan	Toyota	Blue	1990	Economy	Positive
USA	Chryster	Red	1980	Economy	Negative
Japan	Honda	White	1980	Economy	Positive
Japan	Toyota	Green	1980	Economy	Positive
Japan	Honda	Red	1980	Economy	Negative

Or

(b) With the given data set, find B_0 and B_1 by using logistic Regression.

CO2 -App (16)

When X = 6, find the value of Y.

X	1	2	4	3	5
Y	1	3	3	2	5

18. (a) Classify a set of 10 students in to two clusters based on the CO3 -Ana obtained marks and rank using appropriate method. (Analyze)

Marks	99	59	97	87	86	77	67	57	47	40
Rank	1	7	2	3	4	5	6	8	9	10

Or

- (b) By using the fitness function as f(x) = 2x with the interval [0, CO3-Ana 15], find the optimal solution using appropriate algorithm.
- 19. (a) Derive an equation for MAP hypothesis using Bayes theorem and CO4- Ana explain Maximum Likelihood Hypothesis for predicting probabilities. (16)

Or

(b) Consider the sample dataset mentioned below and calculate CO4-Ana (16) $\frac{\partial L}{\partial W \, 1}$ by using back propagation algorithm. Assume 1. Your network has only one hidden layer. 2. All the weights are equal to 1 and all the bias are equal to 0.

	*		
Name	Weight (lb)	Height (in)	Gender
Alice	133	65	F
Bob	160	72	M
Charlie	152	70	M
Diana	120	60	F

20. (a) Draw the perceptron network with the notation. Derive an CO5-U equation of gradient descent rule to minimize the error.

Or

(b) Explain Q Learning and learning set of rules in FOIL. CO5- U (16)