A
/
$\overline{}$
_

(a) $\pm 0.1\%$

(a) kcal / kWh

The units for heat rate are

(b) $\pm 1\%$

(b) kWh/k cal

Reg. No.:					

Question Paper Code: 99333

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022

Elective

Electrical and Electronics Engineering

	19UEE933 – POWER SY	STEM	OPERATION AND C	ONTROL				
	(R	egulatio	ons 2019)					
Duration: Three hours			Maximum: 100 Marks					
	Ansv	ver ALI	Questions					
	PART A	- (10 x	1 = 10 Marks)					
1.	A load curve is a plot of				CO1- U			
	(a) Load versus generation capacity	(b) L	(b) Load versus current					
	(c) Load versus time	(d) L	(d) Load versus cost of power					
2.	Load factor during a period is				CO1- U			
	(a) Average Load / Installed Capacity		(b) Average Load / Maximum Load					
	(c) Maximum Load / Average Load		(d) Maximum Load / Installed Capacity					
3.	Plant or generation control related to				CO2-U			
	(a) HVDC (b) SVR &SVC	\mathbb{C}	(c) EDC & UC	(d) LFC	& AVR			
4.	The units of speed regulation of gover	nor are			CO2-U			
	(a) Hz (b) Hz per MV	A	(c) Hz per MW	(d) None	e of the Above			
5.	The operation of OLTC does				CO3-U			
	(a) improve voltage stability		(b) improve system stability					
	(c) improve power factor		(d) all of the above					
6.	The permissible voltage variation in tr	ansmiss	ion and distribution sy	stem is	CO3- U			

(c) $\pm 10\%$

(c) kcal / h

(d) $\pm 25\%$.

(d) kW

CO4- U

8.	In economic dispatch including transmission losses, the effect of increased penalty is to					enalty	CO4- U	
	(a) i	ncreased load	on that generator		(b) decreased loa	d on that ger	nerator	
	(c) l	keep the load	on that generator o	constant	(d) either (a) or (b)		
9.	Thre	ee major func	tion of power syst	em security				CO5- U
	(a) I	Economical o	peration, Economi	cal Dispate	h, Load schedulin	g		
	(b) S	State Estimati	on, Economical D	ispatch, Ge	neration Schedulii	ng		
	(c) S	System Monit	oring, Contingenc	y analysis,	Security constrain	ed OPF		
	(d) a	all of the abov	ve					
10.	Pow	ver system mo	onitoring is usually	done by				CO5- U
	(a) I	ЕТАР	(b) SCADA	(0	c) Matlab	(d) P	SPM	
			PAR	$T - B (5 \times 2)$	2= 10 Marks)			
11.	Def	ine diversity f	actor.					CO1- U
12.	Iden	ntify the advar	ntages of pool ope	ration?				CO2- U
13.	List	out the Meth	ods of Voltage Co	ntrol?				CO3 -U
14.	Dra	w the increme	ental fuel cost curv	e for a ther	mal power plant			CO4 -U
15.	. Define state estimation.						CO5 -U	
			PA	ART - C (5	x 16= 80Marks)			
16.	(a)	Group $A = 2$ Group $B = 1$ Group $C = 5$ Group $D = 1$ P.M and 6 A	.M. Plot the daily	A.M and 6 A.M and 10M and 10) A.M and 6 load curve	P.M A.M A.M 5 P.M and then bet		CO1- U	(16)
	(b)	Explain an	overview of powe	_	peration and contr	rol and the	CO1- U	(16)

role of computer in the implementation with help of block diagram.

17. (a) Two synchronous machines with the following data are operating in CO2-U (16)parallel to feed a common load of 300 MW. Machine I: Governor speed droop: 4% Speed changer set to give 75% rated load at rated speed. Machine II: Governor speed droop: 3% Speed changer set to give 50% rated load at rated speed. The nominal frequency of operation of the set is 50 Hz. Determine the load taken by each machine and frequency of operation. (b) Two 750 kW alternators operate in parallel. The speed regulation of CO2-U (16)one set is 100% to 103% for full load to no load and that of other is 100% to 104%. How will the two alternators share a load of 1000 kW? What will be the system frequency at this load? Assume free governor action. 18. (a) Explain the components of generation and absorption of reactive CO3-U (16)power in power system. Or (b) Draw the circuit diagram for a typical excitation system and discuss. CO₃- U (16)19. (a) A power plant consists of two 200 MW units, whose input cost data CO4-U (16)given by F1 = 0.004 P12 + 2.0 P1 + 80 Rs./hrF2 = 0.006 P12 + 1.5 P1 + 100 Rs./hrFor the total load of 250 MW, what should be the division of load between two units for most economic operation? Also find the total cost. Or (b) Derive the co-ordination equation, conditions and inequalities for the CO4-U (16)economic dispatch problem without losses. 20. (a) Draw the block diagram to show the hardware components of a CO5-U (16)SCADA system for a power system and explain the application of SCADA in monitoring and control of power system.

(b) Explain the concepts of energy control centre or load dispatch centre.

Also discuss its various functions in detail.

CO5-U

(16)