A
\mathbf{A}
4 B

Reg. No.:					

Question Paper Code: 59376

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Open elective

Civil Engineering

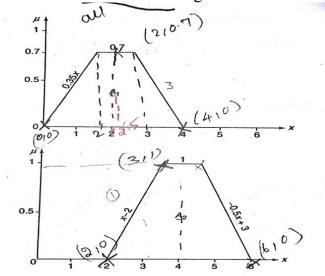
15UEE976 - APPLIED SOFT COMPUTING

(Common to CSE, ECE, MECH, EIE, IT and Chemical Engineering branches)
(Regulation 2015)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$


1.	What is Artificial intelligence?		CO1- R			
	(a) Putting your intelligence into Computer	(b) Programming wit	h your own intelligence			
	(c) Making a Machine intelligent ((d) Putting more memory	y into Computer			
2.	Which AI system will continue to analyze a problem until it finds the best solution?					
	(a) Genetic algorithm	(b) Neural network				
	(c) Intelligent agent	(d) Expert system				
3.	Artificial neural network used for		CO2- R			
	(a) Pattern recognition (b) Classification	(c) Clustering	(d) All of these			
4.	Neural Networks are complex	with many parame	eters. CO2- R			
	(a) Linear Function (b) Nonlinear Functions					
	(c) Discrete Functions	(d) Exponential Function	ns			
5.	Where are Genetic Algorithms applicable?		CO3- R			
	(a) Real time application (b) Biology	(c) Artificial Life	(d) All the above			

6.	Genetic Algorithm are a part of	(CO3- R			
	(a) Evolutionary Computing					
	(b) Inspired by Darwin's theory about evolution - "survival of the fittest"	1				
	(c) Are adaptive heuristic search algorithm based on the evolutionary ideaselection and genetics(d) All of the above	eas of natural				
7.	There are also other operators, more linguistic in nature, called that can be applied to fuzzy set theory.	(CO4- R			
	(a) Hedges (b) Lingual Variable (c) Fuzz Variable (d) None of	of the mention	ned			
8.	Consider a fuzzy set old as defined below old = $\{(20, 0), (30, 0.2), (40.4), (50, 0.6), (60, 0.8), (70, 1), (80, 1)\}$. Then the alpha-cut for alpha 0.4 for the set old will be		CO4- R			
	(a) {(40 } (b) {40, 50, 60, 70, 80} (c) {(20, 30} (d) {(20, 30)}	, 40,50,60,70	, 80}			
9.	Fuzzy logic controllers are based on	(CO5- R			
	(a) Heuristics (b) Linear variables (c) Non-linear variables (d) I	None of the a	bove			
10.	Ability to learn how to do tasks based on the data given for training of initial experience	or (CO5-R			
	(a) Self organization (b) Adaptive learning					
	(c) Fault tolerance (d) Robustness					
	PART - B (5 x 2= 10 Marks)					
11.	. Define expert system					
12.	Enumerate the necessity of activation function.	CO2	CO2-U			
13.	List the advantages of genetic algorithm over conventional algorithm					
14.	. State Core, support and boundary in membership function					
15.	When genetic algorithm is preferred?	COS	5- U			
	PART – C (5 x 16= 80 Marks)					
16.	(a) Draw and explain the architecture of expert system. Or	CO1- U	(16)			
	(b) Describe in detail about the approaches for intelligent control architecture.	CO1- U	(16)			

17. (a) Demonstrate AND function using Hebb net with Bipolar inputs CO2-U and targets (16)

Or

- (b) Explain in detail the types of ANN architecture with neat sketch CO2-U (16)
- 18. (a) Describe the Ant Colony optimization technique with flow chart.. CO3- U Or
 - (b) Explain the genetic algorithm for optimization problem. CO3- U (16)
- 19. (a) Analyze the different methods of defuzzification with an example CO4- App (16) Or
 - (b) For the given membership function as shown in Figure below CO4- App (16) , determine the determine the defuzzfied output value using Centroid and Center of Largest Area methods

20. (a) Explain the Identification and control of linear and non-linear CO5-U dynamic systems using MATLAB (16)

(b) Briefly explain the neural network toolbox in MATLAB. CO5- U (16)