| $\blacktriangle$ |
|------------------|
|                  |
|                  |

## Reg. No.:

# **Question Paper Code: 93023**

# B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

#### Third Semester

## Electronics and Communication Engineering

|                                       | 19UN                                                                                               | MA323- Numerical Ar                          | nalysis and Linear Algebra | ra           |        |  |  |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------|--------------|--------|--|--|--|--|--|
|                                       |                                                                                                    | (Regulati                                    | on 2019)                   |              |        |  |  |  |  |  |
| Dura                                  | ation: Three hours                                                                                 | Maximum: 100                                 | ) Marks                    |              |        |  |  |  |  |  |
|                                       |                                                                                                    | Answer All                                   | Questions                  |              |        |  |  |  |  |  |
| PART A - $(10x 1 = 10 \text{ Marks})$ |                                                                                                    |                                              |                            |              |        |  |  |  |  |  |
| 1.                                    | Truncation error in Simpson's rule is of the order                                                 |                                              |                            |              |        |  |  |  |  |  |
|                                       | (a) h <sup>3</sup>                                                                                 | (b) h <sup>2</sup>                           | (c) h <sup>4</sup>         | (d) 0        |        |  |  |  |  |  |
| 2.                                    | Gaussian two point qu                                                                              | uadrature formula is ex                      | xact for polynomials up    | to degree    | CO6- U |  |  |  |  |  |
|                                       |                                                                                                    |                                              |                            |              |        |  |  |  |  |  |
|                                       | (a) 1                                                                                              | (b) 2 (c                                     | e) 3                       | (d) 5        |        |  |  |  |  |  |
| 3.                                    | 3. Taylor Series method will be very useful to give some values for RK, Milne's and Adam's methods |                                              |                            |              |        |  |  |  |  |  |
|                                       | (a) initial                                                                                        | (b) final                                    | (c) intermediate           | (d) two      |        |  |  |  |  |  |
| 4.                                    | prior values are required to predict the next value in Adam's method                               |                                              |                            |              |        |  |  |  |  |  |
|                                       | (a) 1                                                                                              | (b) 2                                        | (c) 3                      | (d) 4        |        |  |  |  |  |  |
| 5.                                    | PDE of second order,                                                                               | PDE of second order, if $B^2 - 4AC < 0$ then |                            |              |        |  |  |  |  |  |
|                                       | (a) parabolic                                                                                      | (b) elliptic                                 | (c) hyperbolic (d) N       | Non homogene | ous    |  |  |  |  |  |
| 6.                                    | Bender-Schmidt recurrence equation is valid if $\lambda =$                                         |                                              |                            |              |        |  |  |  |  |  |
|                                       | (a) $\frac{1}{2}$                                                                                  | (b) $\frac{1}{3}$                            | (c) $\frac{1}{4}$          | (d) 1        |        |  |  |  |  |  |
| 7.                                    | In a vector space V, known as                                                                      | for every $x, y \in V$ t                     | hen the property $x + y$   | = y + x is   | CO6- U |  |  |  |  |  |
|                                       | (a) commutative                                                                                    | (b) associative                              | (c) identity               | (d) inverse  |        |  |  |  |  |  |

| 3. | If T: V $\rightarrow$ W be linear transformation then T(0) =               |                                                         |                       |                  |                                           |                                                                                    | CO6- U             |         |
|----|----------------------------------------------------------------------------|---------------------------------------------------------|-----------------------|------------------|-------------------------------------------|------------------------------------------------------------------------------------|--------------------|---------|
|    | (a) (                                                                      | )                                                       | (b) 1                 |                  | (c) 2                                     |                                                                                    | (d) 3              |         |
| €. | For                                                                        | any two vectors                                         | x and                 | y in an i        | nner product spac                         | e V ,                                                                              | $ x,y\rangle \leq$ | CO6- U  |
|    | (a)                                                                        | x  +   y                                                | (b) $  x  $           | y                | (c) $  x   -   y $                        |                                                                                    | (d) $  x  /  y  $  |         |
| 0. | The                                                                        | norm of (3,-4,0)                                        | is                    |                  |                                           |                                                                                    |                    | CO6- U  |
|    | (a) 3                                                                      | 3                                                       | (b) -4                |                  | (c) 0                                     |                                                                                    | (d) 5              |         |
|    |                                                                            |                                                         | P                     | ART – B (        | $5 \times 2 = 10 \text{Marks}$            |                                                                                    |                    |         |
| 1. | App                                                                        | ly three –point Ga                                      | iussian q             | uadrature f      | ormula to evaluate                        | $\int_{-1}^{1} \cos x dx$                                                          | C                  | O1- App |
| 2. | Using Euler's method find y(0.2) given $\frac{dy}{dx} = y + e^x$ , y(0) =0 |                                                         |                       |                  |                                           |                                                                                    |                    | O2- App |
| 3. |                                                                            |                                                         |                       |                  | ula and Diagonal Face equation $u_{xx}$ + |                                                                                    | ormula             | CO3- U  |
| 1. | Veri                                                                       | fy the vectors (1,0                                     | 0,0),(1,1,            | 0) in $R^3$ is a | a basis of R <sup>3</sup>                 |                                                                                    | C                  | O4- App |
| 5. | Find                                                                       | I the norm of (2,1,                                     | -1) in $v$            | $r_3(R)$ with s  | tandard inner prod                        | uct.                                                                               | (                  | CO5 App |
|    |                                                                            |                                                         |                       | PART – C         | (5 x 16= 80Marks                          | )                                                                                  |                    |         |
| 5. | (a)                                                                        | (i) Find $\frac{dy}{dx}$ , $\frac{d^2y}{dx^2}$<br>x 1.5 | 2.0                   | 2.5              | 3.0 3.5                                   | 4.0                                                                                | CO1-Apj            | p (8)   |
|    |                                                                            | y 3.375 (ii) Using three                                | 7.000<br>point Ga     | l                | 1                                         | $ \begin{array}{c c} 59.000 \\ \hline 1.5 \\ \int e^{-x^2} dx \\ 0.2 \end{array} $ | CO1-Apj            | p (8)   |
|    |                                                                            |                                                         |                       | Or               |                                           |                                                                                    |                    |         |
|    | (b)                                                                        | (i) Evaluate $\int_{0}^{\pi/2} s$                       | inxdx by              | dividing th      | e range into 10 equ                       | ial parts                                                                          | CO1 -Ap            | op (8)  |
|    |                                                                            | (i) Trapezoio                                           | dal rule              | (ii) Simpso      | on's $\frac{1}{3}$ rule                   |                                                                                    |                    |         |
|    |                                                                            | (ii) Evaluate $\int_{0}^{2}$                            | $\frac{dx}{4+x^2}  1$ | using Rom        | berg's method c                           | orrect to                                                                          | CO1 -Ap            | p (8)   |
|    |                                                                            | decimal places.                                         |                       |                  |                                           |                                                                                    |                    |         |
|    |                                                                            | 1                                                       |                       |                  |                                           |                                                                                    |                    |         |

17. (a) (i) Using Taylor's series method find y(0.1) for 
$$\frac{dy}{dx} = x^2 y - 1$$
, y(0) CO2 -App (8) = 1

(ii) Given 
$$\frac{dy}{dx} = 1 + y^2$$
,  $y(0) = 0$ ,  $y(0.2) = 0.2027$ ,  $y(0.4) = 0.4228$ , CO2 -App (8)  $y(0.6) = 0.6841$  evaluate  $y(0.8)$  by Adams – Bash forth Method.

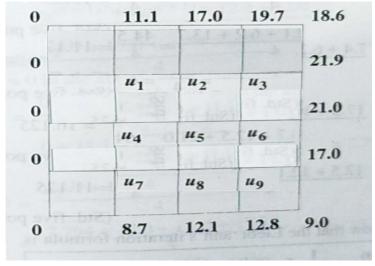
Or

(b) Using R.K Method of 4<sup>th</sup> order, solve 
$$\frac{dy}{dx} = x + y^2$$
 with  $y(0) = 1$  at CO2 -App (16)  
 $x = 0.1$ 

18. (a) (i) Solve 
$$\frac{\partial^2 u}{\partial x^2} = 16 \frac{\partial u}{\partial t}$$
 in  $0 \le x \le 1$ ,  $t \ge 0$   $u(0,t) = 0$ ,  $u(1,t) =$ 

CO3-App (8)

100t


u(x,0) = 0 find the values of u for 1 time step function with  $h = \frac{1}{4}$  by Crank-Nicholson's difference method.

(ii) Solve 
$$\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$$
,  $u(0,t) = 0$ ,  $u(4,t) = 0$ ,  $u(x,0) = x(4-x)$  CO3-App (8)

. Take h = 1 and find the values of u up to t = 5 using Bender-Schmidt's difference equation.

Or

(b) Solve the Laplace equation  $u_{xx} + u_{yy} = 0$  at the nine mesh points CO3- App (16) of the square given below. The values of u at the boundary are specified in the figure



19. (a) If  $T:R^2 \to R^3$  be linear transformation defined by CO4-App (16)  $T(a_1, a_2) = (a_1 + a_2, 0, 2a_1 - a_2)$  then find nullity(T) ,rank(T), Is T one-to-one? Is T onto? Also check the rank nullity theorem.

Or

- (b) (i) Find the dimension of the subspace spanned by the vectors (1,2,-3), (0,0,1), (-1,2,1) in  $V_3(R)$ .
  - (ii) Verify the vectors (2,1,0), (-3,-3,1), (-2,1,-1) in  $\mathbb{R}^3$  is a basis of CO4 -App (8)
- 20. (a) Apply Gram-Schmidt process to construct an orthonormal basis CO5- App (16) for  $V_3(R)$  with the standard inner product for the basis  $\{v_1, v_2, v_3\}$  where  $v_1 = (1,0,1)$ ,  $v_2 = (1,3,1)$  and  $v_3 = (3,2,1)$

Or

- (b) (i) Show that the following function defines an inner product on  $V_2(R)$  where  $x = (x_1, x_2)$  and  $y = (y_1, y_2)$  and  $\langle x, y \rangle = 6x_1y_1 + 7x_2y_2$ 
  - (ii) If x = (2,1+i,i) and y = (2-i,2,1+2i) then verify Schwarz's CO5-App (8) inequality.