C

Reg. No.:					

Question Paper Code: 96402

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022

Sixth Semester

Electronics and Communication Engineering

		0	C			
	19UEC	C602– VLSI DESIGN				
	(I	Regulation 2019)				
Dura	ation: Three hours		Maximum: 1	00 Marks		
	Answe	er ALL Questions				
	PART A	$- (5 \times 1 = 5 \text{ Marks})$				
1.	The possible signal values in Verilog HDL are					
	(a) 2 (b) 5	(c) 4	(d) 11			
2.	The following one is the not the mode of the MOSFET transistor					
	(a) Accumulation mode	(b) depletion	mode			
	(c) Inversion mode	(d) non inver	sion mode			
3.	To estimate the delay of logic gates, the	ne analytical method u	sed is	CO1-U		
	(a) RC delay model (b) π delay model	del (c) both a& b	(d) none	of the above		
4.	In CMOS logic circuit the n-MOS train	nsistor acts as		CO1- U		
	(a) Load (b) Pull up network (c)	Pull down network	(d) Not used in CM	OS circuits		
5.	Multipliers are built using			CO1- U		
	(a) binary adders (b) binary subtraction	etors (c) dividers	(d) multipl	exers		
	PART – I	B $(5 \times 3 = 15 \text{ Marks})$				
6.	Design a D flipflop circuit using struc	tural level description.		CO2-App		
7.	What is the need for design rules?			CO1- U		
8.	Write the expression for the logical ef	fort and parasitic delay	of n input NOR	CO2-U		
9.	List the methods to reduce dynamic po	ower dissipation.		CO2-U		
10.	Give the applications of high speed ac	lders.		CO2-U		

PART – C (5 x 16= 80 Marks)

11.	(a)	Design a logic circuit to add two one bit data with carry using Verilog HDL in structural description. Or	CO2- App	(16)
	(b)	Explain the design hierarchy of verilog HDL with neat example.	CO1- U	(16)
12.	(a)	Analyze the effects involved in non-ideal I-V characteristics of NMOS and PMOS device. Brief about any four effects. Or	CO4-Ana	(16)
	(b)	Design the OUT=(AB+CD)' using CMOS layout design rules.	CO4- Ana	(16)
13.	(a)	Discuss the different reliability problems related to the design of reliable chips	CO1- U	(16)
		Or		
	(b)	Analyze the various factors involved to design reliable CMOS chips.	CO4- Ana	(16)
14.	(a)	Analyze the power of CVSL and DVSL logic with examples. Or	CO5- Ana	(16)
	(b)	Describe about the concept of timing issues and pipelining.	CO1- U	(16)
15.	(a)	Explain in detail about any two multiplier structures with necessary diagram.	CO1- U	(16)
		Or		
	(b)	Explain the concept of modified booth multiplier with a suitable example.	CO1- U	(16)