Reg. No.:					

Question Paper Code: 46424

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022

Sixth Semester

Electrical and Electronics Engineering

14UEC624 - APPLIED DIGITAL SIGNAL PROCESSING

(Regulation 2014)

	(Co	ommon to EIE and IC	CE branches)				
Du	ration: Three hours	Maximum: 100 Marks					
		Answer ALL Que	estions				
		PART A - (10 x 1 =	10 Marks)				
1.	The system $y(t) = 3x(t) + 5$	is a system					
	(a) Non-linear	(b) Dynamic	(c) Non-Causal	(d) unstable			
2.	Integration of step signal results in signal.						
	(a) ramp	(b) delta	(c) Sinusoidal	(d) triangular			
3.	The LTIDT system with sy	stem function h(n)=a	un u(n) is stable, only if				
	(a) a>1	(b) 1/a<∞	(c) a<∞	(d) a<1			
4.	Convolution in time domain	n is equal to	in frequency domain.				
	(a) addition	(b) multiplication	(c) compression	(d) expansion			
5.	The phase factors are multiplied before the add and subtract operations in						
	(a) DIT Radix 2 FFT		(b) DIF Radix 2 FFT				
	(c) Inverse DFT		(d) Both (a) and (c)				

(c) 2

(d) 1

6. Compute the X(0) of the sequence $x(n)=\{1, 0, 1, 0, 1, 0, 1, 0\}$

(b) 4

(a) 8

	(a) h(n+N-1)	(b) $h(N+1-n)$	(c) h(N-1-n)	(d) h(n-N-1)			
8.	When s=	LPF is converted to HPF in analog domain.					
	(a) $\frac{s}{\Omega_c}$	(b) $\frac{\Omega_c}{s}$	(c) $s\Omega_c$	(d) s^2			
9.	The pipeline depth	of TMS320C50 is					
	(a) 6	(b) 4	(c) 2	(d) 0			
10.	The function of wa	it-state generator is					
	(a) To insert wait-state in internal and external bus cycles(b) To insert wait-state in data memory cycles(c) To insert wait-state in program memory cycles(d) To insert wait-state in external bus cycles						
	PART - B (5 x $2 = 10 \text{ Marks}$)						
11.	11. Is the system $y(n) = x(-n)$ time invariant or not.						
12.	12. State Parseval's relations in Z transform.						
13.	13. List any two properties of DFT.						
14.	14. What is the necessary and sufficient condition for linear phase characteristic in FIR filter?						
15.	What is pipelining	?					
	PART - C (5 x $16 = 80 \text{ Marks}$)						
16.		$x(t/3)$ $x(-n)$ $x(t^2)$					
Or							

7. The condition for linear phase characteristic in FIR filter is, the impulse h(n)=_____

where N is the duration of the sequence.

- (b) State and prove sampling theorem for low pass band limited signal and explain the process of reconstruction of the signal from its samples. (16)
- 17. (a) Using residue method find the inverse Z transform of

$$X(z) = [1 + 3z^{-1}] / [(1 + 3z^{-1} + 2z^{-2})], |z| > 2.$$
(16)

Or

- (b) State and prove the time shifting and convolution property of Z-transform. (16)
- 18. (a) Evaluate 8-point DFT of the following sequence using DIT-FFT $x[n] = \{ 2, 1, 2, 1, 1, 2, 1, 2 \}. \tag{16}$

Or

- (b) Derive the butterfly diagram of 8 point radix-2 decimation in Time FFT algorithm. (16)
- 19. (a) Design a digital low-pass Butterworth IIR filter using bilinear z-transform with a 3dB cut-off frequency of 2kHz and minimum attenuation of 30dB at 4.25kHz for a sampling rate of 10kHz. (16)

Or

(b) Design a filter with
$$H_d(e^{j\omega}) = \begin{cases} e^{-j3\omega}, & \frac{-\pi}{4} \le |\omega| \le \frac{\pi}{4} \\ 0, & \frac{\pi}{4} < |\omega| \le \pi \end{cases}$$

Using a Hamming window with N = 7. (16)

20. (a) With a neat block diagram explain in detail about the architecture of TMS320C50. (16)

Or

- (b) (i) Draw the block diagram of Harvard architecture of a DSP and explain its blocks. (8)
 - (ii) Explain various addressing modes of TMS processor. (8)