A	Reg. No.:						

Question Paper Code: U2P08

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Second Semester

		Electronics and Co	ommur	nication En	gineering					
		21UPH208- E	lectron	nagnetic T	heory					
		(Reg	ulation	is 2021)						
Dura	ntion: Three hours				N	Maximum: 100 M	Iarks			
		Answer	ALL (Questions						
	PART A - $(10 \times 1 = 10 \text{ Marks})$									
1.	Highest energy level that can be occupied by an electron at 0 K CO1-									
	(a) Excited state (b) Conduction state (c) Fermi energy (d) Average						energy			
2.	Which material is	s used for the manufac	ture of	f ground wi	ire?		CO1-U			
	(a) Aluminium	(b) Galvanised ste	eel	(c) Cast iro	on	(d) Stainless	steel.			
3.	The potential insi	de a charged hollow s	phere i	is	-		CO1-U			
	(a) Same as that of	on the surface		(b) Zero						
	(c) Less than that	on the surface		(d) None	of these					
4.	For a charge Q1,	the effect of charge Q	2 on Q	1 will be			CO1-U			
	(a) $F1 = F2$ (b)	F1 = -F2 (c) F	1 = F2	c = 0	(d) F1 and	F2 are not equal				
5.	What is the relationsity?	ationship between m	agnetio	c field str	ength and	current	CO1-U			
	(a) $\nabla . H = J$	$(b)\nabla.J = H$		$(c)\nabla \times H =$: J ($(d) \nabla \times J = H$				
6.	_	ill be if the magnetic field.	ne surfa	ace area ve	ector of a	surface is	CO1-U			
	(a) Zero	(b) Unity	(c) Clo	se to maxi	mum ((d) Maximum				
7.	is a type of into electrical sig	f photo detector, which	h can o	convert opt	tical signal	S	CO1-U			
	(a) PIN diode	(b) Avalanche d	iode	(c) zener d	iode	(d) schottky o	liode			

8.	In photo diode the carriers are generated in the							
	(a) I	Pregion (b)do	epletion region (c)l	N region (d)	terminal o	of the diode		
9.		naterial with one ensions are large i	dimension in Nano is called	range and the oth	ner two		CO1-U	
	(a) micro-material (b)quantum wire (c)quantum well (d)						ot	
10.	Whi	ch one of the follo	owing is an example f	For semiconductin	g nanowire	es?	CO1-U	
	(a) l	Nickel	(b) Platinum	(c) Silicon	(0	d) All of the a	above	
			PART - B (5	x 2= 10Marks)				
11.	Give	e any two postulat	tes of classical free ele	ectron theory.			CO1-U	
12.	Exp	lain Coulomb lav	vs of forces				CO1-U	
13.	•							
14.								
15.								
			PART – C (5 x 16= 80Marks))			
16.	(a)	-	of states and arrive and for unit volume of a Or	•	e number	CO1-U	(16)	
	(b)		ction, evaluate the ter hat an electron in a m of 5 eV			CO3-App	(16)	
17.	(a)	Derive the differ and Laplace equa		s law. Also derive	e Poisson's	s CO2-U	(16)	
	(b)	Evnlain electric	Or dipole in a uniform el	ectric field		CO2-U	(16)	
	(0)	Explain electric	dipole ili a dililorili el	cettre field		CO2-0	(10)	
18.	(a)	Derive the diff electrostatics	ferential and integra	l forms of Gau	ıss law ii	n CO1-U	(16)	
	(b)	The magnetic fie	Or eld strength of copper	is 10^6 amnere/me	ter If the	CO6-Ana	(16)	
	(0)	magnetic suscep	tibility of copper is -0 ensity and magnetization	.8 x 10 ⁻⁵ , calculat		COO-Alla	(10)	
19.	(a)	Describe the con	struction and working Or	g of photodiode		CO1-U	(16)	
	(b)	Explain the cons	truction and working	of Solar cell.		CO1-U	(16)	

- 20. (a) Describe Nano electronic devices with suitable diagram. CO1-U (16)
 - (b) Explain quantum confinement and quantum structures in Nano CO1-U (16) material.