/	

(a) 2πi

Question Paper Code: U2M04

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Second Semester

Electronics and communication Engineering

		Licetionies and com	mumeation Engineeri	1115		
	2	1UMA204- Calculus,C	Complex analysis and	Numerical me	ethods	
		(Regula	ations 2021)			
Dur	ation: Three hours			Maximum:	100 Marks	
		Answer A	LL Questions			
		PART A - (10	$0 \times 1 = 10 \text{ Marks}$			
1.	The Particular inte		CO6-1			
	(a) xe^{-2x}	(b) xe^{2x}	(c) x^2e^{2x}	(d	0 (
2.	The complementar		CO6-1			
	(a) $Ae^{x} + Be^{-\frac{x}{4}}$	(b) $Ae^{-x} + Be^{5x}$	$(c) (A+Bx)e^{2x}$	(d	$) Ae^x + Be^{4x}$	
3.	$\operatorname{Div}_r^- = \underline{\hspace{1cm}}$				CO2-App	
	(a) 0	(b)1	(c)3	(d	$\frac{1}{r}$	
4.	Divergence of vec	Divergence of vector $\mathbf{x}^2 \mathbf{i} + \mathbf{y}^2 \mathbf{j} + \mathbf{z}^2 \mathbf{k}$ at $(1, 2, -3)$ is				
	(a) 8	(b)4	(c)-3	(d	0 (
5.	The critical point of		CO3- Ap			
	a) ±1	b) ±2	c) ± <i>i</i>	d) – <i>i</i>		
6.	The function $f(z)$	$=\frac{1}{z^2+4}$ is not analytic a	$t z = \underline{\qquad}.$		CO3- Ap	
	(a) 2	b) -2	c)2i	d)±2i		
7.	If $f(z)$ is analytic a then $\int f(z)dz = -1$	t all points inside and c	on a simple closed cur	ve c,	CO6-1	

(c) 4πi

(b) $-2\pi i$

(d) 0

8.	Simple pole is a pole of order							CO6-R	
	(a)	1	(0	d) 2		(c) 3		(d) 4	
9.	Itera	ation metho	od converg	ges if $ g^1(x) $					CO6-R
	(a) >	>1	(t	o)<1		(c)=0		(d) > 0	
10.	Gau	ss Jacobi domina		converges	if the	coefficient	matrix is		CO6-U
	(a) S	Squarely	(t	o) logically		(c) diagona	ally	(d) symmetric	ally
				PART –	B (5 x	2= 10Marks	5)		
11.	Find the complete solution of $(D^3 - 6D^2 + 11D - 6)y = 0$ CO1-App								
12.	Find $\nabla \varphi$, if $\varphi = x^2 + y^2 + z^2$ at $(1, -1, 1)$.								O2-App
13.									
14.	Evaluate $\int_{c} \frac{z}{z-2} dz$ where C is $ z = 2$								O4-App
15.	State the principle used in Gauss Jordan Method							CO5-U	
				PART	-C(5)	x 16= 80Ma	arks)		
16.	(a)	(i) Using cosec ax	method of	`variation of	parame	eters solve (A	$D^2 + a^2)y =$	CO1-App	(8)
		has 10 ba	•	teria is grow, and at time bacteria?	•	•		t CO1- App	(8)
			,		Or				
	(b) (i) Solve $(D^2 - 3D + 2)y = e^x + \cos 2x$						CO1- App	(8)	
		(ii) Solve	$(x^2D^2 + x^2)$	xD) $y = 12log$	gx			CO1- App	(8)
17.	(a)	where S i	s the surfa	gence theore		-	-	CO2-App	(16)
		x = 0, x = 0, y = 0	= a, $= b, z = 0$		Or				
	(b)		reen's thec	orem for $\int x^2 dx$	dx + xydy	, whereC is	s bounded by	CO2 -App	(16)
		$\mathbf{x}=0,$. 0						
		x = a, y =	v, $y = a$						

- 18. (a) (i) Find the image of |z 3i| = 3 under the transformation $w = \frac{1}{z}$ CO3-App (8)
 - (ii) If f(z) = u + iv is a regular function of z in a domain D the CO3-App following relation hold in D. $\nabla^2 |f(z)|^2 = 4|f'(z)|^2$.
 - (b) (i) Find the bilinear transformation from -i,0,i to -1,i,1. CO3-App (8)
 - (ii) Find the analytic functions f(z) = u + iv given that CO3-App (8) $2u + v = e^{x} (\cos y - \sin y)$
- 19. (a) (i) Evaluate using Cauchy's Residue theorem for CO4-App (8) $f(z) = \int_{c} \frac{3z^{2} + z 1}{(z^{2} 1)(z 3)} dz, \text{ where 'C' is the circle } |z| = 2.$
 - (ii) Evaluate $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series valid for the region 1 < |z| < 3.

Or

- (b) Using contour integration, to find the value of $\int_{0}^{2\pi} \frac{d\theta}{13-5\cos\theta}$ CO4-App (16)
- 20. (a) (i) Solve the equation $x^3 2x 5 = 0$ by iteration method CO5-App (8)
 - (ii) Solve 4x + 2y + z = 14, x + 5y z = 10, x + y + 8z = 20 by CO5- App (8) Gauss Jordan method

Or

- (b) (i) Using power method find the largest Eigen value and the CO5- App (8) corresponding Eigen vector of the matrix $\begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
 - (ii) Solve by using convolution theorem Solve 28x+4y-z=32; CO5- App (8) x+3y+10z=24; 2x+17y+4z=35 by Gauss Seidel method