4	1	7
۱		

Reg. No. :					

Question Paper Code: 94402

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022

Fourth Semester

Electronics and Communication Engineering

19UEC402- ELECTROMAGNETIC FIELDS AND TRANSMISSION LINES

		(Regula	tion 2019)				
Dur	ation: Three hours			Maximum: 100) Marks		
		Answer ALI	Questions				
		PART A - (5 x	1 = 5 Marks)				
1.	For boundary between conductor and free space the field intensity inside a conductor is_						
	(a) 1	(b) infinity	(c) Zero	(d) constant			
2.	Electromagnetic w	aves are produced by			CO1-U		
	(a) static charge	(b) accelerated charge	(c) moving charge	(d) charged particle			
3.		pedance is not equal to c takes place.	characteristic impedan	ce of	CO2-U		
	(a) Insertion	(b) Reflection	(c) both a and b	(d) None of these			
4.	The points of zero	voltage or current in the s	tanding waves is		CO2- U		
	(a) Antinodes	(b) loops	(c) Nodes	(d) none			
5.	The velocity with v	which the energy propaga	tes along a guide is cal	lled	CO2- U		
	(a) Group velocity		(c) Space velocity	(d) none of th	iese		
		PART - B (5 x)	3= 15 Marks)		CO1-U		
6.	Write the four Maxwell equations in integral form.						
7.	What is the Difference between displacement current and conduction current?						
8.	Differentiate between Band pass and Band elimination filter						
9.	9. Define standing Wave ratio						
10.). What are guided waves? Give examples						

$PART - C (5 \times 16 = 80 \text{ Marks})$

11. (a) Derive the expression for the capacitance of a coaxial cable using CO3- App (16)Laplace's equation Or (b) Solve the Laplace equation for the potential field in homogenous CO3- Ana (16)region between two concentric conducting spheres with radius a,b and V=V₀ at r=a and V=0 at r=b. Find the capacitance between concentric spheres. 12. (a) Derive the EM wave propagation parameters in Free space and CO2-App (16)also derive the expression for electric and magnetic field. (b) Derive the Transmission and reflection coefficient of uniform CO2- App (16)plane waves 13. (a) Design a low pass filter for T and π section having cut off CO3-App (16)frequency 2 Khz to operative with a terminated load resistance of 500 Or (b) Design m-derived low pass filter having a cut off frequency of CO3- App (16)5000Hz and design impedance of 600 ohms. The frequency of infinite attenuation is 1.25 fc 14. (a) A 70 Ω lossless used at a frequency where wavelength 80 cm CO5- Ana (16)terminated by load of $140 + j91 \Omega$. Find the reflection coefficient, VSWR and input impedance using smith chart (b) Derive the expression for single stub matching CO5- Ana (16)15. Determine the solution of electric and magnetic fields of TE CO6- Ana (a) (16)waves guided along rectangular waveguide.

(b) Derive the field equations for TM waves between parallel planes.

CO6- Ana

(16)