С		Reg. No. :											
	Question Paper Code: 99402												
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2022													
Elective													
Electronics and Communication Engineering													
19UEC902- PRINCPILES OF ROBOTICS													
(Regulation 2019)													
Dur	ation: Three hours							M	axim	um:	100	Mar	ks
Answer ALL Questions													
		PART A - (5	x 1 =	= 5 N	/lark	s)							
1.	If a robot has 3 legs, then the number of possible events is										CC)1 - U	
	(a) 24 (b) 720		(c)]	20				(d)) 24()		
2.	The unit of linear accele	ration is										CO	2- U
	(a) kg-m (b) m/s		(c) r	n/s2	d		(d)	rad/s	s22			
3.	The inertia matrix of a r	igid body or a link										CO	3- U
	(a) is always positive definite												
	(b)is always symmetric												
	(c)is an orthogonal matrix												
(d) represents the mass distribution in 3D space													
4.	Gross motion planning problem is known a?							CO	4 - U				
	(a) Fine motion planning problem. (b) Free space mot					ion planning problem.							
	(c) Compliant motion planning problem				(d) none of the above.								
5.	What is necessity for a lot of sensible mobile robotics funaction CO5						5- U						
	(a) Map discovery (b) Geomatric Maps	5	(c) P	erce	ptul	maps		(d)	Sens	oria	l maj	OS
		PART – B (5 :	x 3=	15 1	Mark	s)							
6.	What is meant by robot anatomy?										CO	D1 U	
7.	What is meant by unit Quaternion										CO	D2 U	
8.	Define Linear velocity.											CO	05 U

9.	Def	ine path.	CO3 U								
10.	Mer	ntion the need of continuous Trajectory Recording	CO3 U								
	$PART - C (5 \times 16 = 80 \text{ Marks})$										
11.	(a)	Explain the different types of robots with neat diagrams Or	CO1-U	(16)							
	(b)	Discuss about micro machines in robotics	CO1-U	(16)							
12.	(a)	Derive the Denavit- Hartenberg representation of forward kinematic equations of robots Or	CO2- App	(16)							
	(b)	Derive the direct kinematics equation of SCARA robot using D H transformation matrix.	CO2- App	(16)							
13.	(a)	Express the jacobian matrix for motion of end-effecter generated by a rotary joint and prismatic joint. Or	CO1-U	(16)							
	(b)	Explain the following: (i) Wrist and arm singularity (ii) Linear and Angular velocities	CO1-U	(16)							
14.	(a)	Implement interpolation function with the help of p-Degree polynomial and discuss its uses. Or	CO3- Ana	(16)							
	(b)	Express the time history of position velocity and acceleration for blended trajectory for point-to-point motion with via points.	CO3- Ana	(16)							
15.	(a)	Discuss in detail Methods of Robot programming with suitable example.	CO1-U	(16)							
	(b)	Explain in detail Robot program as a path in space with suitable example	CO1-U	(16)							