A		Reg. No.:										
Question Paper Code: U3027												
B.E./B.Tech. DEGREE EXAMINATION, NOV 2022												
Third Semester												
Computer Science and Business system												
21UMA327- DISCRETE MATHEMATICS AND CACULUS												
(Regulations 2021)												
Duration: Three hours Maximum							num	: 100	Mar	ks		
Answer All Questions												
PART A - $(10x 1 = 10 \text{ Marks})$												
1.	The truth value "If 7 is a positive integer"	*	even",	The trut	th valu	ie "1 >	3 and	d 3		СО	1-U	
	(a) T,F	(b) F,T	(c)	T,T		(0	d) F,F	,				
2.	$P \rightarrow \neg Q$ is equivalent	at to								CO	6- U	
	(a) $\neg P \wedge Q$	(b) $P \wedge \neg Q$	(c)	$\neg (P \land Q)$	2)		(d)	$P \vee \overline{}$	$\neg Q$			
3.	If a bit string contains {0, 1} only, having length 5 has no more than 2 ones in it. Then calculate how many such bit strings are possible?											
	(a)14	(b)12	(c)16			(d)	12				
4.	Calculate how many integers between 1 to 250 are divisible by 2 or 3 CO2- A										App	
	(a) 41	(b)167	(c)8	83		(d)	174					
5.	A subgroup of the gr	roup $\{1, \omega, \omega^2\}$ wher	$e^3 = 1$	under t	he mu	ltiplica	tion i	S		CO	6- U	
	(a) $\{1, \omega\}$	(b) $\{\omega, \omega^2\}$	(c) {1,	ω^2 }			(d) N	lone	one of the above			

CO6-U

CO4- App

(d) Monoid

(d) 5!

The union of two subgroup of G is a

(b) semi group

(b) 4!

(c) group

(c) 5

(a) Subgroup

 $\int_{0}^{\infty} e^{-x} x^{4} dx$

(a) 4

CO₄- App $\int 6e^{-x}x^5dx$ (a) 6 (b) 6! (c) 7! (d) 5! The region of integration of the integral $\iint f(x, y) dxdy$ is CO6- U (b) rectangle (c) triangle (d) circle (a) square 10. The value of integral $\int_{-\infty}^{2} \int_{-\infty}^{4} \frac{dx dy}{xy}$ CO5- App (b) $(\log 2)^2$ $(c) \log 6$ (d) None of the above (a) log 8 PART - B (5 x 2= 10Marks) 11. Compute PDNF for $(P \vee Q)$ CO1- App 12. In how many ways can letters of the word "THUNAIEZHUTHU" be CO2- App arranged 13. For a Group $G = \{1, -1, -i, i\}$ under multiplication, Find order of all elements CO₃- App Compute y_{25} if $y = \frac{1}{x}$ CO₄- App 15. Solve $\int_{0}^{1/2} x^2 y^2 dy dx$ CO5- App PART - C (5 x 16= 80Marks) 16. (a) (i) Calculate PCNF and PDNF for $(P \land \neg Q) \lor (P \land R) \lor (Q \land R)$ CO1 -App (8)(ii) Using the rules of inference derive & using CP Rule. CO1 -App (8) $P \rightarrow (Q \rightarrow V), \neg U \lor P, Q \Rightarrow U \rightarrow (V \land P)$ Or (b) (i) Prove the following by Indirect Method. CO1 -App (8) $P \to (Q \land R), (Q \lor S) \to U, P \lor S \Rightarrow U$ (ii) Show that the premises "one student in this class knows how CO1 -App (8)to write programs in JAVA" and "Every one who knows how to write programs in JAVA can get a high-paying jop" imply the

conclusion "some one in this class can get high paying job

17. (a) (i) Using mathematical induction show that CO2 -App (8)
$$n^{3} + (n+1)^{3} + (n+2)^{3}$$
 is a multiple of 9.

(ii) Solve
$$a_n - 4a_{n-1} + 4a_{n-2} = 2^n$$
, $a_0 = 1$, $a_1 = 1$. CO2 -App Or

- (b) (i) Calculate the number of positive integers not exceeding 1200 CO2 -App that are divisible by 2,3,5 or by 7
 - (ii) Using generating functions Solve $a_n = 3a_{n-1} + 5^n$, $a_0 = 4$ CO2 -App (8)
- 18. (a) (i) Let G be a finite group of order 'n' and H be any subgroup of CO3- App G . Then Show that the order of H divides the order of G. (i.e) O(H) / O(G)
 - (ii) Show that $(Q^+,*)$ is ab abelian Group. Where * defined as CO3-App $a*b=\frac{ab}{2}$ where $a, b \in Q^+$

Or

- (b) $S = Q \times Q$, such that binary operation defined by (a,b)*(x,y) = (ax,ay+b) (16)
 - (i) Prove that (S, *) is a semi group
 - (ii). Is it commutative and calculate the value of (2,4)*(1,5)
 - (iii) Find the identity Element
 - (iv) Find the inverse of (2,3)*(8,6) and (0,2)*(3,5)

19. (a) (i) If
$$y = a \cos(\log x) + b \sin(\log x)$$
 Show that $x^2 y_2 + xy_1 + y = 0$ CO4-App (8)

(ii) Compute the value of a,b,c if
$$\lim_{x \to 0} \frac{ae^x - be^{-x} - cx}{x - \sin x} = 4$$
 CO4-App (8)

Or

(b) (i) Compute
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\tan x}}$$
 CO4-App (8)

(ii) Evaluate
$$\lim_{x \to 0} \frac{xe^x - \log(1+x)}{x^2}$$
 CO4-App (8)

- 20. (a) (i) Find the volume of the tetrahedron bounded by CO5-App (8) 6x + 4y + z = 12, x = 0, y = 0, z = 0.
 - (ii) Compute the area between the parabola $y^2 = x$ and $x^2 = y$ CO5- App (8)
 - (b) (i) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}}$ CO5- App (8)
 - (ii) Change the order of integration and hence evaluate CO5- App (8)

$$\mathbf{a} \quad \mathbf{a} + \sqrt{\mathbf{a}^2 - \mathbf{y}^2}$$

$$\int \int \int \mathbf{x} \mathbf{y} \, d\mathbf{x} \, d\mathbf{y}$$

$$0 \quad \mathbf{a} - \sqrt{\mathbf{a}^2 - \mathbf{y}^2}$$