A		Reg. No. :											
		L	ľ	l									
		Question	Pape	r Co	de:	U30	22						
	B.E./B.Tech. DEGREE EXAMINATION, NOV 2022												
		Thi	rd Ser	nester									
	Computer Science and Engineering												
,	21UMA322- PROBABILITY, QUEUEING THEORY AND NUMERICAL METHODS												
		(Reg	ulatior	ns 202	1)								
		(Common to In	ıforma	tion T	echn	olog	y)						
Dura	ation: Three hours							Μ	laxin	num	: 100	Ma	rks
		Answe	r All (Questi	ons								
		PART A -	(10x 1	= 10	Marl	ks)							
1.	If A and B are indep	pendent events ther	n P(A	n B) =	=							CO	6- U
	(a) 0	(b) P (A). P(B)		(c) P(A) +	P(B)			(d)	P(A)) – P	(B)	
2.	If A and B are mutua	ally exclusive even	ts ther	P(A	B) :	=						CO	6- U
	(a) 0 (b	P(A) - P(B)	(c)	P(A)	. P(B)			(d)]	P (A)) + P	(B)	
3.	The relation between	$L_s \& L_q$ is										CO	5- U
	(a) $L_s = \lambda L_q$	(b) $L_q = \lambda L_s$		(c) i	$L_q = I$	$L_s + \frac{2}{p}$	<u>г</u> и		(d)	$L_s = 1$	L_q +	$\frac{\lambda}{\mu}$	
4.	For a model $(M/M/1)$ is 4 per hour then W_s): (∞ /FCFS)The a	rrival	rate is	3 pe	er ho	ur an	d sei	rvice	e rate	C	02-	App
	(a) 55 Minutes	(b) 65 Minutes		(c) 45	Minu	ıtes			(d)	60 M	linute	es	
5.	In method of momer	nts ,the first momer	nt is de	noted	by						(206	- U
	(a) $\Delta y \Sigma x$	(b) $\Delta x \Sigma y \Delta x$		(c) .	$\Delta x \Sigma$	ху	(d) Δ	y Σx	y			
6.	number of method of least squa	normal equations res	are re	quirec	to :	fit a	a stra	aigh	t lin	e in	C	CO6-	U
	(a) 1	(b) 2		(c) 3					(d)	4			
7.	Order of convergence	e of iteration meth	od is									CO	6- U
	(a) 1	(b) 2		(c)	3				(d)	0			

8.	Itera	tion method c	onverg	ges if	$ g^1(x) $							CO6- U
	(a) >	-1	(b) <1			(c)	=0		(0	d) >0	
9.	In E	uler's method	, if h is	s smal	l, the 1	metho	d is too					CO6- U
	(a) f	ast		(b) slo	W		(c) avera	ige	((d) None of	these
10.	Predictor-Corrector methods are starting methods									CO6- U		
	(a) s	elf	(b) not	self		(c)	identit	y	(d) None	e of the abo	ve
				Р	ART -	– B (5	x 2= 10	Marks)			
11.	For	Binomial distr	ibutio	n mea	n is 6	and va	iriance i	s 2, Co	ompute	e P[X=x].	C	O1- App
12.	Wha	it do you mear	n by ef	fectiv	e arriv	val rate	?				C	O2- App
13.	Writ	e down the No	ormal	Equat	ions o	f the c	urve y	$= ab^{x}$,		C	O3- App
14.	Writ	the iterative	formu	ıla for	findir	ng \sqrt{a}						CO6- U
15.	Writ	e down the A	dam's j	predic	tor an	d corre	ector for	rmula.				CO6- U
	$PART - C (5 \times 16 = 80 Marks)$											
16.	(a)	(i) Obtain the	e Corre	elatior	n coeff	ficient	for the	follow	ing he	ights (in	CO1-App	(8)
		inches) of fat	hers X	and t	heir so	ons Y.			_			
		X	65	66	67	67	68	69	70	72		
		(ii) The num	67 ber of	68 mont	$\frac{65}{\text{hly br}}$	68 eakdor	$\frac{72}{\text{wns of }}$	72	69 Nuter is	$\frac{71}{8 a R V}$	CO1-App	(8)
		having a Poi	sson c	listrib	ution	with 1	mean ec	qual to	1.8. 1	Find the	COT-App	(0)
		Probability	that h	nis co	mpute	er wil	l funct	tion fo	or a	month		
		(a)Without a	break	down	(b) W	ith onl	y one b	reakdo	wn (c)	With at		
		least one brea	akdow	n		Or						
	(b)	(i) In a large	consig	anmer	t of e	lectric	bulbs 1	0 % ar	e defe	ctive. A	CO1 -Ana	(8)
	(-)	random sam	ple 20	0 bul	bs are	e take	n for i	inspect	ion. F	Find the		(-)
		probability th	nat (i) all a	re goo	d bult	os (ii) ex	cactly 1	three d	lefective		
		bulbs.		7 1 . 1		V L	(1	. 11		1 . 1 . 1 . 4	001	(0)
		(11) A Rand	om v	ariab	e	X has	s the to	ollowii	ng pro	obability	COI -Ana	(8)
		X=x 0	1	2	3	4	5	6	7	8		
		P(X=x) a	3a	5a	7a	9a	11a	13a	15a	17a		
		Using th	e prob	abilit	y mass	s funct	ion, cal	culate 1	the fol	lowing		
		(i) 'a'	(ii) P((i) 'a' (ii) $P(X < 3), P(X \ge 3)$ (iii) $(0 < X < 5)$								

(iv) distribution function.

17.	(a)	A petrol pump station has 4 pumps. The service times follow the exponential distribution with a mean of 6 minutes and cars arrive for service in a Poisson process at the rate of 30 cars per hour. (i) What is the Probability that an arrival would have to wait in line? (ii) Find the average number of cars in the system and in the queue? (iii) Find the average waiting time of a customer in the system and in the queue? (iv) Find the idle of a pump station?	CO2 -Ana	(16)
	(b)	 (i) A T.V. repairman finds that the time spent on his job has an exponential distribution with 30 minutes. The repair sets in the order in which they come, which follow Poisson arrival pattern with average rate of 10 per 8 hour day., Identify the queuing model, (a) What is the repairman's expected idle time each day? (b) How many jobs are ahead of an average set brought in? (c) What is the average queue length? 	CO2 -Ana	(8)
		(ii) The one person barber shop can accommodate a maximum of 5 people at a time (4 waiting and 1 getting haircut, Customers arrive according to a Poisson distribution with mean 5 per hour. The barber cuts hair at an average rate of 4 per hour. (i) What percentage of time is the barber idle? (ii) What fraction of the potential customers are turned away? (iii) What is the expected number of customers waiting for a haircut?	CO2 -Ana	(8)

18. (a) (i) Applying least square method techniques fit a straight line CO3- App (8) y = ax + b

Х	5	10	15	20	25
Y	16	19	23	26	30

(ii) Applying method of moments fit a straight line y = ax + b CO3- App (8)

Х	1	2	3	4
Y	0.30	0.64	1.32	5.40
		Or		

3

U3022

(b) (i) Applying method of moments fit a straight line y = ax + b

Х	1	2	3	4
Y	1.7	1.8	2.3	3.2

(ii) Applying least square method techniques fit the curve CO3-App (8)

 $y = ab^{x}$ with the following data:

Х	0	1	2	3	4
Y	1	1.8	3.3	4.5	6.3

19. (a) (i) Solve the equation 3x - cos x - 1 =0 by Newton Raphson CO4-App (8) method correct to 4 decimal places.
(ii) Solve 27x + 6y - z = 85, 6x + 15y +2z = 72, x + y + 54z =110 CO4-App (8) by Gauss Seidel Method

(b) (i) Using Power method find numerically largest Eigen value of CO4 - App (8) $\begin{pmatrix}
25 & 1 & 2 \\
1 & 3 & 0 \\
2 & 0 & -4
\end{pmatrix}$

(ii) Solve the system of equations by Gauss Elimination methods CO4 -App (8) x+3y+3z = 16, x+4y+3z = 18, x+3y+4z = 19

20. (a) (i) Using Taylor's series method find y(1.1) given y' = x + y CO5- App (8) with y(1) = 0CO5- App (8)

Or

(ii) Solve $\frac{dy}{dx} = y - x^2$ with y(0) = 1, at x= 0.2, x = 0.4 by Euler's method (8)

(b) Given
$$\frac{dy}{dx} = x^3 + y$$
, $y(0) = 2$, $y(0.2) = 2.443$, $y(0.4) = 2.99$, CO5- App (16)
 $y(0.6) = 3.68$, Compute $y(0.8)$ by Milne's Predictor &
Corrector method

Or