C

10. Differentiate PLA and PAL

Reg. No. :					

CO1-U

Question Paper Code: 93303

B.E./B.Tech. DEGREE EXAMINATION, NOV 2022

Third Semester

Computer Science Engineering

19UCS303 – Digital Electronics

		(Re	gulatio	on 2019)						
Dur	ation: Three hours	Maximum: 100 Marks								
		Answe	r ALL	Questions						
		PART A	- (5 x	1 = 5 Marks	s)					
1.	Which of the following expressions is in the product of sum (POS) form?									
	(a) $(A + B) (C + D)$	(b) (A)B(CD)	(c)	AB(CD)	(d) A	AB + CD				
2.	2. Infer the Boolean expression of barrow in half-subtract or									
	(a) AB' ((b) A'B		(c) AB		(d)A'B'				
3.	Show the input value for S and R whether it is Reset state.									
	(a) 00	(b) 01	(c) 10)	(d) 11					
4.	Which is not belong	to the categories o	rd.			CO1- U				
	(a) Static	(b) Dynamic		(c) Static-1		(d) Static-	.9			
5.	CMOS technology is			CO	O1- R					
	(a) Inverter			(b) Microp	rocessor					
	(c) Digital logic	(d)Both microprocessor and digital logic								
		PART – I	3 (5 x	3= 15 Mark	s)					
6.	Express $x + yz$ in standard form						CO2- App			
7.	Design circuit to detect invalid BCD number						CO1- U			
8.	8. Differentiate Moore and Mealy state machine									
9.	Explain the steps inv		CO1- U							

$$PART - C$$
 (5 x 16= 80Marks)

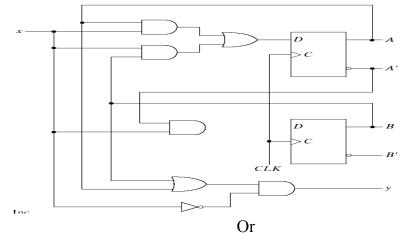
11. (a) (i) Using a K-Map simplify F = (0-3, 12-15) + d(7, 11)

 $CO2-App \qquad (8)$

(ii) Simplify the expression using k-map F(W,X,Y,Z) = (1,4,6,7,8,9,10,11,15)

CO2- App (8)

Or


- (b) Simplify the following using the Quine Mc Clusky minimization CO2- App technique f(a,b,c,d) = (0,1,2,3,6,7,8,9,14,15).
- 12. (a) Design about 2 bit magnitude comparator

CO2- App (16)

(16)

Ot

- (b) Elaborate about half subractor and how full subtractor can be CO1-U implemented using 2 half adders with the necessary truth table and equation
- 13. (a) Construct the transition table, state table and state diagram for the moore sequential circuit given below (16)

- (b) Explain different types of shift registers in detail with the necessary CO3- App (16) diagram
- 14. (a) Find whether static 'O' hazard does not exist in implementing the CO2- App (16) Boolean expression: $Y = x_1 x_3 + x_1 x_2 x_3 + x_2' x_3$. If exists, then find the static hazards present

Or

(b) Design a asynchronous sequential circuit with 2 inputs T and C. The CO2- App (16) output attains a value of 1 when T = 1 & c moves from 1 to 0.

Otherwise the output is 0.

15. (a) Implement the switching functions.

CO2- App (16)

Z1=ab'd'e+a'b'c'd'e'+bc+de

Z2=a'c'e

Z3=bc+de+c'd'e'+bd

Z4=a'c'e+ce using 5 x 8 x 4 PLA

Or

(b) Design a combinational circuit using ROM that accepts a three bit CO2- App (16) binary number and outputs a binary number and outputs a binary number equal to the square of the input number.