С		Reg. No. :										
		Ouestion Par	 per (Cod	e: 9	6203	3					
	г	BE/BTech DEGREE	EXA	MIN				202	2			
	1	S.E./ D. ICCII. DECKEE) 1 \ , 1		202.	2			
		Computer sois		nd Er	naina	orin						
	101105603						S CUI	NE I		ANINI	C	
	19003003-	(Pagul	ition	~ 201		WIA	СПІ	INE I	LER	AINIIN	J	
Dur	ration. Three hours	(Regui	ations	\$ 201	9)			Мож		m: 100	Mort	a
Dur	ation. Three nours	A	A 11 C					wax	Imur	n: 100	Mark	5
			All Q (5 1		ons							
1	Withink alarmanta i	PARTA -	(5X I	= 5	viark	.s)					C	01 1
1.	which elements i	n agent are used for sel	ecting	g exte	ernai	actic	ons?		(1)			J1- (
•	(a) Perceive	(b) Performance	(C) Lea	rning	g		((d) A	Actuato	r	01.1
2. What can be viewed as single literal of disjunction?						C	JI- I					
	(a) Multiple claus	se	(b) Co	mbın	e cla	use		_			
	(c) Unit clause		(d) No	ne of	the	ment	ione	d			
3. Which variable cannot be written in entire distribution as a table?						C	D 3- 1					
	(a) Discrete		(b) Co	ntinu	ous						
	(c) Both Discrete	& Continuous	(d) No	ne of	the	ment	ione	d			
4.	Which of the following is the model used for learning? CO1-							D1-1				
	(a) Decision trees	b	(1	b) Ne	eural	netw	orks					
	(c) Propositional	and FOL rules	(•	d) Al	l of t	he m	entic	oned				
5.	K-means clustering clustering method	ng algorithm is an exam 1?	ple o	f wh	ich ty	vpe o	f				C	01-1
	(a) Hierarchical	(b) Partitioning	l	(c) D	ensit	y Ba	sed	(d)	Ran	dom		
		PART – B ((5 x 3	= 15	Mark	s)						
6.	Differentiate unin	formed and informed s	earch	strat	egies	5.				C	201-1	J
7.	List Out Two Kinds Of Synchronic Rules That Allow Deductions?				CO2- A	٩p						

8. List out the applications of Bayesian N/W? CO1- U

9.	Give the major issues that affect the design of a learning element	CO1- U
10.	List out some applications of unsupervised learning.	CO1- U

10. List out some applications of unsupervised learning.

$$PART - C (5 x 16 = 80 Marks)$$

11. (a) Provide the PEAS description of the task environment for Internet CO2-App (16)book-shopping agent, Vaccum Cleaner Agent, Medical Diagnosis System and Autonomous Mars rover. Compare and contrast the properties of task environment

Or

(b) Consider the tree shown below. The numbers on the arcs are the arc CO2-App (16)lengths. Assume that the nodes are expanded in alphabetical order when no other order is specified by the search, and that the start state is A and goal is state M. No visited or expanded lists are used. What order would the states be expanded by each type of search? Stop when you expand G. Write only the sequence of states expanded by each search. Write only the sequence of states expanded by the following search

(i) Breadth-first search (ii) Depth-first search

(iii) Iterative deepening search

12. (a) Consider the following facts and query

CO2-App (16)

"One says that a person who gives good lectures about FOL to students is a good teacher. This group of people, studying at the ANU, have very good lectures about Logic and all of those lectures are given by Yannick who is a person." And We must prove that "Yannick is a good teacher" using forward Chaining algorithm and Backward chaining algorithm.

(b) Consider the following 5 facts that are added to a knowledge base CO2-App (16) in turn. Hobbit, Hero, Hafling are predicates, FinalBattle is a function, Frodo and Mount Doom are

constants, and x and y are variables that are universally quantified.

Or

1. Journey(Frodo, Mount Doom)

2. Hafling(x) \rightarrow Hobbit(x)

3. Journey(x, y) \rightarrow FinalBattle(x, y)

4. Hafling(Frodo)

5. Hobbit(x) \land FinalBattle(x, Mount Doom) \rightarrow Hero(x)

(i) Show how forward chaining can be used to infer whether Frodo is a Hero (i.e.Hero(Frodo)).

(ii) Show how backward chaining can be used to infer whether Frodo is a Hero (i.e. Hero(Frodo)).

(iii) Justify "Frodo is Hero" by resolution.

13. (a) Apply Naive Bayes classifier for making a decision to Play Tennis CO2-App (16) using the following attribute:

< Outlook: sunny, Temperature: cool, Humidity: high, Wind: strong >

Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	• Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D 7	Overcast	Cool	Normal	Strong	Yes	
D 8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes	
D13	Overcast	Hot	Normal	Weak	Yes	
D14	Rain	Mild	High	Strong	No	

Table: Training examples for the target concept PlayTennis

- (b) (i) Describe a method for constructing Bayesian Networks CO1-U (8)
 - (ii) Explain Variable elimination algorithm for answering queries CO1-U (8) on Bayesian networks

14.	(a)	Explain about Decision tree learning with an example	CO1- U	(16)
		Or		
	(b)	Explain about Artificial Neural network with an example	CO1- U	(16)
15.	(a)	Apply fuzzy-means clustering to the following data points $\{(1, 3), (2, 5), (6, 8), (7, 9)\}$	CO2-App	(16)
		Or		
	(b)	Apply K-means clustering to the following 8 examples to convert	CO2-App	(16)

into them into 3 clusters: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). Assume the initial seeds are A1,A4,A7.